Cargando…
The structure of a hibernating ribosome in a Lyme disease pathogen
The spirochete bacterial pathogen Borrelia (Borreliella) burgdorferi (Bbu) affects more than 10% of the world population and causes Lyme disease in about half a million people in the US annually. Therapy for Lyme disease includes antibiotics that target the Bbu ribosome. Here we present the structur...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618245/ https://www.ncbi.nlm.nih.gov/pubmed/37907464 http://dx.doi.org/10.1038/s41467-023-42266-7 |
_version_ | 1785129732852940800 |
---|---|
author | Sharma, Manjuli R. Manjari, Swati R. Agrawal, Ekansh K. Keshavan, Pooja Koripella, Ravi K. Majumdar, Soneya Marcinkiewicz, Ashley L. Lin, Yi-Pin Agrawal, Rajendra K. Banavali, Nilesh K. |
author_facet | Sharma, Manjuli R. Manjari, Swati R. Agrawal, Ekansh K. Keshavan, Pooja Koripella, Ravi K. Majumdar, Soneya Marcinkiewicz, Ashley L. Lin, Yi-Pin Agrawal, Rajendra K. Banavali, Nilesh K. |
author_sort | Sharma, Manjuli R. |
collection | PubMed |
description | The spirochete bacterial pathogen Borrelia (Borreliella) burgdorferi (Bbu) affects more than 10% of the world population and causes Lyme disease in about half a million people in the US annually. Therapy for Lyme disease includes antibiotics that target the Bbu ribosome. Here we present the structure of the Bbu 70S ribosome obtained by single particle cryo-electron microscopy at 2.9 Å resolution, revealing a bound hibernation promotion factor protein and two genetically non-annotated ribosomal proteins bS22 and bL38. The ribosomal protein uL30 in Bbu has an N-terminal α-helical extension, partly resembling the mycobacterial bL37 protein, suggesting evolution of bL37 and a shorter uL30 from a longer uL30 protein. Its analogy to proteins uL30m and mL63 in mammalian mitochondrial ribosomes also suggests a plausible evolutionary pathway for expansion of protein content in mammalian mitochondrial ribosomes. Computational binding free energy predictions for antibiotics reflect subtle distinctions in antibiotic-binding sites in the Bbu ribosome. Discovery of these features in the Bbu ribosome may enable better ribosome-targeted antibiotic design for Lyme disease treatment. |
format | Online Article Text |
id | pubmed-10618245 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-106182452023-11-02 The structure of a hibernating ribosome in a Lyme disease pathogen Sharma, Manjuli R. Manjari, Swati R. Agrawal, Ekansh K. Keshavan, Pooja Koripella, Ravi K. Majumdar, Soneya Marcinkiewicz, Ashley L. Lin, Yi-Pin Agrawal, Rajendra K. Banavali, Nilesh K. Nat Commun Article The spirochete bacterial pathogen Borrelia (Borreliella) burgdorferi (Bbu) affects more than 10% of the world population and causes Lyme disease in about half a million people in the US annually. Therapy for Lyme disease includes antibiotics that target the Bbu ribosome. Here we present the structure of the Bbu 70S ribosome obtained by single particle cryo-electron microscopy at 2.9 Å resolution, revealing a bound hibernation promotion factor protein and two genetically non-annotated ribosomal proteins bS22 and bL38. The ribosomal protein uL30 in Bbu has an N-terminal α-helical extension, partly resembling the mycobacterial bL37 protein, suggesting evolution of bL37 and a shorter uL30 from a longer uL30 protein. Its analogy to proteins uL30m and mL63 in mammalian mitochondrial ribosomes also suggests a plausible evolutionary pathway for expansion of protein content in mammalian mitochondrial ribosomes. Computational binding free energy predictions for antibiotics reflect subtle distinctions in antibiotic-binding sites in the Bbu ribosome. Discovery of these features in the Bbu ribosome may enable better ribosome-targeted antibiotic design for Lyme disease treatment. Nature Publishing Group UK 2023-10-31 /pmc/articles/PMC10618245/ /pubmed/37907464 http://dx.doi.org/10.1038/s41467-023-42266-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Sharma, Manjuli R. Manjari, Swati R. Agrawal, Ekansh K. Keshavan, Pooja Koripella, Ravi K. Majumdar, Soneya Marcinkiewicz, Ashley L. Lin, Yi-Pin Agrawal, Rajendra K. Banavali, Nilesh K. The structure of a hibernating ribosome in a Lyme disease pathogen |
title | The structure of a hibernating ribosome in a Lyme disease pathogen |
title_full | The structure of a hibernating ribosome in a Lyme disease pathogen |
title_fullStr | The structure of a hibernating ribosome in a Lyme disease pathogen |
title_full_unstemmed | The structure of a hibernating ribosome in a Lyme disease pathogen |
title_short | The structure of a hibernating ribosome in a Lyme disease pathogen |
title_sort | structure of a hibernating ribosome in a lyme disease pathogen |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618245/ https://www.ncbi.nlm.nih.gov/pubmed/37907464 http://dx.doi.org/10.1038/s41467-023-42266-7 |
work_keys_str_mv | AT sharmamanjulir thestructureofahibernatingribosomeinalymediseasepathogen AT manjariswatir thestructureofahibernatingribosomeinalymediseasepathogen AT agrawalekanshk thestructureofahibernatingribosomeinalymediseasepathogen AT keshavanpooja thestructureofahibernatingribosomeinalymediseasepathogen AT koripellaravik thestructureofahibernatingribosomeinalymediseasepathogen AT majumdarsoneya thestructureofahibernatingribosomeinalymediseasepathogen AT marcinkiewiczashleyl thestructureofahibernatingribosomeinalymediseasepathogen AT linyipin thestructureofahibernatingribosomeinalymediseasepathogen AT agrawalrajendrak thestructureofahibernatingribosomeinalymediseasepathogen AT banavalinileshk thestructureofahibernatingribosomeinalymediseasepathogen AT sharmamanjulir structureofahibernatingribosomeinalymediseasepathogen AT manjariswatir structureofahibernatingribosomeinalymediseasepathogen AT agrawalekanshk structureofahibernatingribosomeinalymediseasepathogen AT keshavanpooja structureofahibernatingribosomeinalymediseasepathogen AT koripellaravik structureofahibernatingribosomeinalymediseasepathogen AT majumdarsoneya structureofahibernatingribosomeinalymediseasepathogen AT marcinkiewiczashleyl structureofahibernatingribosomeinalymediseasepathogen AT linyipin structureofahibernatingribosomeinalymediseasepathogen AT agrawalrajendrak structureofahibernatingribosomeinalymediseasepathogen AT banavalinileshk structureofahibernatingribosomeinalymediseasepathogen |