Cargando…
Extracting medicinal chemistry intuition via preference machine learning
The lead optimization process in drug discovery campaigns is an arduous endeavour where the input of many medicinal chemists is weighed in order to reach a desired molecular property profile. Building the expertise to successfully drive such projects collaboratively is a very time-consuming process...
Autores principales: | Choung, Oh-Hyeon, Vianello, Riccardo, Segler, Marwin, Stiefl, Nikolaus, Jiménez-Luna, José |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618272/ https://www.ncbi.nlm.nih.gov/pubmed/37907461 http://dx.doi.org/10.1038/s41467-023-42242-1 |
Ejemplares similares
-
Δ-Quantum machine-learning for medicinal chemistry
por: Atz, Kenneth, et al.
Publicado: (2022) -
Machine Learning
for Fast, Quantum Mechanics-Based
Approximation of Drug Lipophilicity
por: Isert, Clemens, et al.
Publicado: (2023) -
Physical chemistry : a step-by-step approach /
por: Kemp, Marwin K., 1942-
Publicado: (1979) -
Syndrome Diagnosis: Human Intuition or Machine Intelligence?
por: Braaten, Øivind, et al.
Publicado: (2008) -
Machine learning in chemistry
por: Pyzer-Knapp, Edward O, et al.
Publicado: (2019)