Cargando…

A CT-based radiomics classification model for the prediction of histological type and tumour grade in retroperitoneal sarcoma (RADSARC-R): a retrospective multicohort analysis

BACKGROUND: Retroperitoneal sarcomas are tumours with a poor prognosis. Upfront characterisation of the tumour is difficult, and under-grading is common. Radiomics has the potential to non-invasively characterise the so-called radiological phenotype of tumours. We aimed to develop and independently...

Descripción completa

Detalles Bibliográficos
Autores principales: Arthur, Amani, Orton, Matthew R, Emsley, Robby, Vit, Sharon, Kelly-Morland, Christian, Strauss, Dirk, Lunn, Jason, Doran, Simon, Lmalem, Hafida, Nzokirantevye, Axelle, Litiere, Saskia, Bonvalot, Sylvie, Haas, Rick, Gronchi, Alessandro, Van Gestel, Dirk, Ducassou, Anne, Raut, Chandrajit P, Meeus, Pierre, Spalek, Mateusz, Hatton, Matthew, Le Pechoux, Cecile, Thway, Khin, Fisher, Cyril, Jones, Robin, Huang, Paul H, Messiou, Christina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lancet Pub. Group 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618402/
https://www.ncbi.nlm.nih.gov/pubmed/37922931
http://dx.doi.org/10.1016/S1470-2045(23)00462-X
_version_ 1785129768253915136
author Arthur, Amani
Orton, Matthew R
Emsley, Robby
Vit, Sharon
Kelly-Morland, Christian
Strauss, Dirk
Lunn, Jason
Doran, Simon
Lmalem, Hafida
Nzokirantevye, Axelle
Litiere, Saskia
Bonvalot, Sylvie
Haas, Rick
Gronchi, Alessandro
Van Gestel, Dirk
Ducassou, Anne
Raut, Chandrajit P
Meeus, Pierre
Spalek, Mateusz
Hatton, Matthew
Le Pechoux, Cecile
Thway, Khin
Fisher, Cyril
Jones, Robin
Huang, Paul H
Messiou, Christina
author_facet Arthur, Amani
Orton, Matthew R
Emsley, Robby
Vit, Sharon
Kelly-Morland, Christian
Strauss, Dirk
Lunn, Jason
Doran, Simon
Lmalem, Hafida
Nzokirantevye, Axelle
Litiere, Saskia
Bonvalot, Sylvie
Haas, Rick
Gronchi, Alessandro
Van Gestel, Dirk
Ducassou, Anne
Raut, Chandrajit P
Meeus, Pierre
Spalek, Mateusz
Hatton, Matthew
Le Pechoux, Cecile
Thway, Khin
Fisher, Cyril
Jones, Robin
Huang, Paul H
Messiou, Christina
author_sort Arthur, Amani
collection PubMed
description BACKGROUND: Retroperitoneal sarcomas are tumours with a poor prognosis. Upfront characterisation of the tumour is difficult, and under-grading is common. Radiomics has the potential to non-invasively characterise the so-called radiological phenotype of tumours. We aimed to develop and independently validate a CT-based radiomics classification model for the prediction of histological type and grade in retroperitoneal leiomyosarcoma and liposarcoma. METHODS: A retrospective discovery cohort was collated at our centre (Royal Marsden Hospital, London, UK) and an independent validation cohort comprising patients recruited in the phase 3 STRASS study of neoadjuvant radiotherapy in retroperitoneal sarcoma. Patients aged older than 18 years with confirmed primary leiomyosarcoma or liposarcoma proceeding to surgical resection with available contrast-enhanced CT scans were included. Using the discovery dataset, a CT-based radiomics workflow was developed, including manual delineation, sub-segmentation, feature extraction, and predictive model building. Separate probabilistic classifiers for the prediction of histological type and low versus intermediate or high grade tumour types were built and tested. Independent validation was then performed. The primary objective of the study was to develop radiomic classification models for the prediction of retroperitoneal leiomyosarcoma and liposarcoma type and histological grade. FINDINGS: 170 patients recruited between Oct 30, 2016, and Dec 23, 2020, were eligible in the discovery cohort and 89 patients recruited between Jan 18, 2012, and April 10, 2017, were eligible in the validation cohort. In the discovery cohort, the median age was 63 years (range 27–89), with 83 (49%) female and 87 (51%) male patients. In the validation cohort, median age was 59 years (range 33–77), with 46 (52%) female and 43 (48%) male patients. The highest performing model for the prediction of histological type had an area under the receiver operator curve (AUROC) of 0·928 on validation, based on a feature set of radiomics and approximate radiomic volume fraction. The highest performing model for the prediction of histological grade had an AUROC of 0·882 on validation, based on a radiomics feature set. INTERPRETATION: Our validated radiomics model can predict the histological type and grade of retroperitoneal sarcomas with excellent performance. This could have important implications for improving diagnosis and risk stratification in retroperitoneal sarcomas. FUNDING: Wellcome Trust, European Organisation for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group, the National Institutes for Health, and the National Institute for Health and Care Research Biomedical Research Centre at The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research.
format Online
Article
Text
id pubmed-10618402
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Lancet Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-106184022023-11-02 A CT-based radiomics classification model for the prediction of histological type and tumour grade in retroperitoneal sarcoma (RADSARC-R): a retrospective multicohort analysis Arthur, Amani Orton, Matthew R Emsley, Robby Vit, Sharon Kelly-Morland, Christian Strauss, Dirk Lunn, Jason Doran, Simon Lmalem, Hafida Nzokirantevye, Axelle Litiere, Saskia Bonvalot, Sylvie Haas, Rick Gronchi, Alessandro Van Gestel, Dirk Ducassou, Anne Raut, Chandrajit P Meeus, Pierre Spalek, Mateusz Hatton, Matthew Le Pechoux, Cecile Thway, Khin Fisher, Cyril Jones, Robin Huang, Paul H Messiou, Christina Lancet Oncol Articles BACKGROUND: Retroperitoneal sarcomas are tumours with a poor prognosis. Upfront characterisation of the tumour is difficult, and under-grading is common. Radiomics has the potential to non-invasively characterise the so-called radiological phenotype of tumours. We aimed to develop and independently validate a CT-based radiomics classification model for the prediction of histological type and grade in retroperitoneal leiomyosarcoma and liposarcoma. METHODS: A retrospective discovery cohort was collated at our centre (Royal Marsden Hospital, London, UK) and an independent validation cohort comprising patients recruited in the phase 3 STRASS study of neoadjuvant radiotherapy in retroperitoneal sarcoma. Patients aged older than 18 years with confirmed primary leiomyosarcoma or liposarcoma proceeding to surgical resection with available contrast-enhanced CT scans were included. Using the discovery dataset, a CT-based radiomics workflow was developed, including manual delineation, sub-segmentation, feature extraction, and predictive model building. Separate probabilistic classifiers for the prediction of histological type and low versus intermediate or high grade tumour types were built and tested. Independent validation was then performed. The primary objective of the study was to develop radiomic classification models for the prediction of retroperitoneal leiomyosarcoma and liposarcoma type and histological grade. FINDINGS: 170 patients recruited between Oct 30, 2016, and Dec 23, 2020, were eligible in the discovery cohort and 89 patients recruited between Jan 18, 2012, and April 10, 2017, were eligible in the validation cohort. In the discovery cohort, the median age was 63 years (range 27–89), with 83 (49%) female and 87 (51%) male patients. In the validation cohort, median age was 59 years (range 33–77), with 46 (52%) female and 43 (48%) male patients. The highest performing model for the prediction of histological type had an area under the receiver operator curve (AUROC) of 0·928 on validation, based on a feature set of radiomics and approximate radiomic volume fraction. The highest performing model for the prediction of histological grade had an AUROC of 0·882 on validation, based on a radiomics feature set. INTERPRETATION: Our validated radiomics model can predict the histological type and grade of retroperitoneal sarcomas with excellent performance. This could have important implications for improving diagnosis and risk stratification in retroperitoneal sarcomas. FUNDING: Wellcome Trust, European Organisation for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group, the National Institutes for Health, and the National Institute for Health and Care Research Biomedical Research Centre at The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research. Lancet Pub. Group 2023-11 /pmc/articles/PMC10618402/ /pubmed/37922931 http://dx.doi.org/10.1016/S1470-2045(23)00462-X Text en © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Articles
Arthur, Amani
Orton, Matthew R
Emsley, Robby
Vit, Sharon
Kelly-Morland, Christian
Strauss, Dirk
Lunn, Jason
Doran, Simon
Lmalem, Hafida
Nzokirantevye, Axelle
Litiere, Saskia
Bonvalot, Sylvie
Haas, Rick
Gronchi, Alessandro
Van Gestel, Dirk
Ducassou, Anne
Raut, Chandrajit P
Meeus, Pierre
Spalek, Mateusz
Hatton, Matthew
Le Pechoux, Cecile
Thway, Khin
Fisher, Cyril
Jones, Robin
Huang, Paul H
Messiou, Christina
A CT-based radiomics classification model for the prediction of histological type and tumour grade in retroperitoneal sarcoma (RADSARC-R): a retrospective multicohort analysis
title A CT-based radiomics classification model for the prediction of histological type and tumour grade in retroperitoneal sarcoma (RADSARC-R): a retrospective multicohort analysis
title_full A CT-based radiomics classification model for the prediction of histological type and tumour grade in retroperitoneal sarcoma (RADSARC-R): a retrospective multicohort analysis
title_fullStr A CT-based radiomics classification model for the prediction of histological type and tumour grade in retroperitoneal sarcoma (RADSARC-R): a retrospective multicohort analysis
title_full_unstemmed A CT-based radiomics classification model for the prediction of histological type and tumour grade in retroperitoneal sarcoma (RADSARC-R): a retrospective multicohort analysis
title_short A CT-based radiomics classification model for the prediction of histological type and tumour grade in retroperitoneal sarcoma (RADSARC-R): a retrospective multicohort analysis
title_sort ct-based radiomics classification model for the prediction of histological type and tumour grade in retroperitoneal sarcoma (radsarc-r): a retrospective multicohort analysis
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618402/
https://www.ncbi.nlm.nih.gov/pubmed/37922931
http://dx.doi.org/10.1016/S1470-2045(23)00462-X
work_keys_str_mv AT arthuramani actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT ortonmatthewr actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT emsleyrobby actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT vitsharon actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT kellymorlandchristian actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT straussdirk actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT lunnjason actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT doransimon actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT lmalemhafida actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT nzokirantevyeaxelle actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT litieresaskia actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT bonvalotsylvie actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT haasrick actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT gronchialessandro actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT vangesteldirk actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT ducassouanne actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT rautchandrajitp actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT meeuspierre actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT spalekmateusz actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT hattonmatthew actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT lepechouxcecile actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT thwaykhin actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT fishercyril actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT jonesrobin actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT huangpaulh actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT messiouchristina actbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT arthuramani ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT ortonmatthewr ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT emsleyrobby ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT vitsharon ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT kellymorlandchristian ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT straussdirk ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT lunnjason ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT doransimon ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT lmalemhafida ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT nzokirantevyeaxelle ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT litieresaskia ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT bonvalotsylvie ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT haasrick ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT gronchialessandro ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT vangesteldirk ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT ducassouanne ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT rautchandrajitp ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT meeuspierre ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT spalekmateusz ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT hattonmatthew ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT lepechouxcecile ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT thwaykhin ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT fishercyril ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT jonesrobin ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT huangpaulh ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis
AT messiouchristina ctbasedradiomicsclassificationmodelforthepredictionofhistologicaltypeandtumourgradeinretroperitonealsarcomaradsarcraretrospectivemulticohortanalysis