Cargando…

Machine learning based readmission and mortality prediction in heart failure patients

This study intends to predict in-hospital and 6-month mortality, as well as 30-day and 90-day hospital readmission, using Machine Learning (ML) approach via conventional features. A total of 737 patients remained after applying the exclusion criteria to 1101 heart failure patients. Thirty-four conve...

Descripción completa

Detalles Bibliográficos
Autores principales: Sabouri, Maziar, Rajabi, Ahmad Bitarafan, Hajianfar, Ghasem, Gharibi, Omid, Mohebi, Mobin, Avval, Atlas Haddadi, Naderi, Nasim, Shiri, Isaac
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618467/
https://www.ncbi.nlm.nih.gov/pubmed/37907666
http://dx.doi.org/10.1038/s41598-023-45925-3
Descripción
Sumario:This study intends to predict in-hospital and 6-month mortality, as well as 30-day and 90-day hospital readmission, using Machine Learning (ML) approach via conventional features. A total of 737 patients remained after applying the exclusion criteria to 1101 heart failure patients. Thirty-four conventional features were collected for each patient. First, the data were divided into train and test cohorts with a 70–30% ratio. Then train data were normalized using the Z-score method, and its mean and standard deviation were applied to the test data. Subsequently, Boruta, RFE, and MRMR feature selection methods were utilized to select more important features in the training set. In the next step, eight ML approaches were used for modeling. Next, hyperparameters were optimized using tenfold cross-validation and grid search in the train dataset. All model development steps (normalization, feature selection, and hyperparameter optimization) were performed on a train set without touching the hold-out test set. Then, bootstrapping was done 1000 times on the hold-out test data. Finally, the obtained results were evaluated using four metrics: area under the ROC curve (AUC), accuracy (ACC), specificity (SPE), and sensitivity (SEN). The RFE-LR (AUC: 0.91, ACC: 0.84, SPE: 0.84, SEN: 0.83) and Boruta-LR (AUC: 0.90, ACC: 0.85, SPE: 0.85, SEN: 0.83) models generated the best results in terms of in-hospital mortality. In terms of 30-day rehospitalization, Boruta-SVM (AUC: 0.73, ACC: 0.81, SPE: 0.85, SEN: 0.50) and MRMR-LR (AUC: 0.71, ACC: 0.68, SPE: 0.69, SEN: 0.63) models performed the best. The best model for 3-month rehospitalization was MRMR-KNN (AUC: 0.60, ACC: 0.63, SPE: 0.66, SEN: 0.53) and regarding 6-month mortality, the MRMR-LR (AUC: 0.61, ACC: 0.63, SPE: 0.44, SEN: 0.66) and MRMR-NB (AUC: 0.59, ACC: 0.61, SPE: 0.48, SEN: 0.63) models outperformed the others. Reliable models were developed in 30-day rehospitalization and in-hospital mortality using conventional features and ML techniques. Such models can effectively personalize treatment, decision-making, and wiser budget allocation. Obtained results in 3-month rehospitalization and 6-month mortality endpoints were not astonishing and further experiments with additional information are needed to fetch promising results in these endpoints.