Cargando…
A hybrid CNN-Random Forest algorithm for bacterial spore segmentation and classification in TEM images
We present a new approach to segment and classify bacterial spore layers from Transmission Electron Microscopy (TEM) images using a hybrid Convolutional Neural Network (CNN) and Random Forest (RF) classifier algorithm. This approach utilizes deep learning, with the CNN extracting features from image...
Autores principales: | Qamar, Saqib, Öberg, Rasmus, Malyshev, Dmitry, Andersson, Magnus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618482/ https://www.ncbi.nlm.nih.gov/pubmed/37907463 http://dx.doi.org/10.1038/s41598-023-44212-5 |
Ejemplares similares
-
Hypervirulent R20291 Clostridioides difficile spores show disinfection resilience to sodium hypochlorite despite structural changes
por: Malyshev, Dmitry, et al.
Publicado: (2023) -
Mode of Action of Disinfection Chemicals on the Bacterial
Spore Structure and Their Raman Spectra
por: Malyshev, Dmitry, et al.
Publicado: (2021) -
Segmentation of Microscope Erythrocyte Images by CNN-Enhanced Algorithms
por: Buczkowski, Mateusz, et al.
Publicado: (2021) -
Fabricating a dielectrophoretic microfluidic device using 3D-printed moulds and silver conductive paint
por: Valijam, Shayan, et al.
Publicado: (2023) -
APESTNet with Mask R-CNN for Liver Tumor Segmentation and Classification
por: Balasubramanian, Prabhu Kavin, et al.
Publicado: (2023)