Cargando…
Point‐of‐care detection of fibrosis in liver transplant surgery using near‐infrared spectroscopy and machine learning
INTRODUCTION: Visual assessment and imaging of the donor liver are inaccurate in predicting fibrosis and remain surrogates for histopathology. We demonstrate that 3‐s scans using a handheld near‐infrared‐spectroscopy (NIRS) instrument can identify and quantify fibrosis in fresh human liver samples....
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618569/ https://www.ncbi.nlm.nih.gov/pubmed/37920655 http://dx.doi.org/10.1002/hsr2.1652 |
_version_ | 1785129804652085248 |
---|---|
author | Sharma, Varun J. Adegoke, John A. Fasulakis, Michael Green, Alexander Goh, Su K. Peng, Xiuwen Liu, Yifan Jackett, Louise Vago, Angela Poon, Eric K. W. Starkey, Graham Moshfegh, Sarina Muthya, Ankita D'Costa, Rohit James, Fiona Gordon, Claire L. Jones, Robert Afara, Isaac O. Wood, Bayden R. Raman, Jaishankar |
author_facet | Sharma, Varun J. Adegoke, John A. Fasulakis, Michael Green, Alexander Goh, Su K. Peng, Xiuwen Liu, Yifan Jackett, Louise Vago, Angela Poon, Eric K. W. Starkey, Graham Moshfegh, Sarina Muthya, Ankita D'Costa, Rohit James, Fiona Gordon, Claire L. Jones, Robert Afara, Isaac O. Wood, Bayden R. Raman, Jaishankar |
author_sort | Sharma, Varun J. |
collection | PubMed |
description | INTRODUCTION: Visual assessment and imaging of the donor liver are inaccurate in predicting fibrosis and remain surrogates for histopathology. We demonstrate that 3‐s scans using a handheld near‐infrared‐spectroscopy (NIRS) instrument can identify and quantify fibrosis in fresh human liver samples. METHODS: We undertook NIRS scans on 107 samples from 27 patients, 88 from 23 patients with liver disease, and 19 from four organ donors. RESULTS: Liver disease patients had a median immature fibrosis of 40% (interquartile range [IQR] 20–60) and mature fibrosis of 30% (10%–50%) on histopathology. The organ donor livers had a median fibrosis (both mature and immature) of 10% (IQR 5%–15%). Using machine learning, this study detected presence of cirrhosis and METAVIR grade of fibrosis with a classification accuracy of 96.3% and 97.2%, precision of 96.3% and 97.0%, recall of 96.3% and 97.2%, specificity of 95.4% and 98.0% and area under receiver operator curve of 0.977 and 0.999, respectively. Using partial‐least square regression machine learning, this study predicted the percentage of both immature (R (2) = 0.842) and mature (R (2) = 0.837) with a low margin of error (root mean square of error of 9.76% and 7.96%, respectively). CONCLUSION: This study demonstrates that a point‐of‐care NIRS instrument can accurately detect, quantify and classify liver fibrosis using machine learning. |
format | Online Article Text |
id | pubmed-10618569 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-106185692023-11-02 Point‐of‐care detection of fibrosis in liver transplant surgery using near‐infrared spectroscopy and machine learning Sharma, Varun J. Adegoke, John A. Fasulakis, Michael Green, Alexander Goh, Su K. Peng, Xiuwen Liu, Yifan Jackett, Louise Vago, Angela Poon, Eric K. W. Starkey, Graham Moshfegh, Sarina Muthya, Ankita D'Costa, Rohit James, Fiona Gordon, Claire L. Jones, Robert Afara, Isaac O. Wood, Bayden R. Raman, Jaishankar Health Sci Rep Original Research INTRODUCTION: Visual assessment and imaging of the donor liver are inaccurate in predicting fibrosis and remain surrogates for histopathology. We demonstrate that 3‐s scans using a handheld near‐infrared‐spectroscopy (NIRS) instrument can identify and quantify fibrosis in fresh human liver samples. METHODS: We undertook NIRS scans on 107 samples from 27 patients, 88 from 23 patients with liver disease, and 19 from four organ donors. RESULTS: Liver disease patients had a median immature fibrosis of 40% (interquartile range [IQR] 20–60) and mature fibrosis of 30% (10%–50%) on histopathology. The organ donor livers had a median fibrosis (both mature and immature) of 10% (IQR 5%–15%). Using machine learning, this study detected presence of cirrhosis and METAVIR grade of fibrosis with a classification accuracy of 96.3% and 97.2%, precision of 96.3% and 97.0%, recall of 96.3% and 97.2%, specificity of 95.4% and 98.0% and area under receiver operator curve of 0.977 and 0.999, respectively. Using partial‐least square regression machine learning, this study predicted the percentage of both immature (R (2) = 0.842) and mature (R (2) = 0.837) with a low margin of error (root mean square of error of 9.76% and 7.96%, respectively). CONCLUSION: This study demonstrates that a point‐of‐care NIRS instrument can accurately detect, quantify and classify liver fibrosis using machine learning. John Wiley and Sons Inc. 2023-10-31 /pmc/articles/PMC10618569/ /pubmed/37920655 http://dx.doi.org/10.1002/hsr2.1652 Text en © 2023 The Authors. Health Science Reports published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Sharma, Varun J. Adegoke, John A. Fasulakis, Michael Green, Alexander Goh, Su K. Peng, Xiuwen Liu, Yifan Jackett, Louise Vago, Angela Poon, Eric K. W. Starkey, Graham Moshfegh, Sarina Muthya, Ankita D'Costa, Rohit James, Fiona Gordon, Claire L. Jones, Robert Afara, Isaac O. Wood, Bayden R. Raman, Jaishankar Point‐of‐care detection of fibrosis in liver transplant surgery using near‐infrared spectroscopy and machine learning |
title | Point‐of‐care detection of fibrosis in liver transplant surgery using near‐infrared spectroscopy and machine learning |
title_full | Point‐of‐care detection of fibrosis in liver transplant surgery using near‐infrared spectroscopy and machine learning |
title_fullStr | Point‐of‐care detection of fibrosis in liver transplant surgery using near‐infrared spectroscopy and machine learning |
title_full_unstemmed | Point‐of‐care detection of fibrosis in liver transplant surgery using near‐infrared spectroscopy and machine learning |
title_short | Point‐of‐care detection of fibrosis in liver transplant surgery using near‐infrared spectroscopy and machine learning |
title_sort | point‐of‐care detection of fibrosis in liver transplant surgery using near‐infrared spectroscopy and machine learning |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618569/ https://www.ncbi.nlm.nih.gov/pubmed/37920655 http://dx.doi.org/10.1002/hsr2.1652 |
work_keys_str_mv | AT sharmavarunj pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning AT adegokejohna pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning AT fasulakismichael pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning AT greenalexander pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning AT gohsuk pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning AT pengxiuwen pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning AT liuyifan pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning AT jackettlouise pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning AT vagoangela pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning AT poonerickw pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning AT starkeygraham pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning AT moshfeghsarina pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning AT muthyaankita pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning AT dcostarohit pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning AT jamesfiona pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning AT gordonclairel pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning AT jonesrobert pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning AT afaraisaaco pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning AT woodbaydenr pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning AT ramanjaishankar pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning |