Cargando…

Point‐of‐care detection of fibrosis in liver transplant surgery using near‐infrared spectroscopy and machine learning

INTRODUCTION: Visual assessment and imaging of the donor liver are inaccurate in predicting fibrosis and remain surrogates for histopathology. We demonstrate that 3‐s scans using a handheld near‐infrared‐spectroscopy (NIRS) instrument can identify and quantify fibrosis in fresh human liver samples....

Descripción completa

Detalles Bibliográficos
Autores principales: Sharma, Varun J., Adegoke, John A., Fasulakis, Michael, Green, Alexander, Goh, Su K., Peng, Xiuwen, Liu, Yifan, Jackett, Louise, Vago, Angela, Poon, Eric K. W., Starkey, Graham, Moshfegh, Sarina, Muthya, Ankita, D'Costa, Rohit, James, Fiona, Gordon, Claire L., Jones, Robert, Afara, Isaac O., Wood, Bayden R., Raman, Jaishankar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618569/
https://www.ncbi.nlm.nih.gov/pubmed/37920655
http://dx.doi.org/10.1002/hsr2.1652
_version_ 1785129804652085248
author Sharma, Varun J.
Adegoke, John A.
Fasulakis, Michael
Green, Alexander
Goh, Su K.
Peng, Xiuwen
Liu, Yifan
Jackett, Louise
Vago, Angela
Poon, Eric K. W.
Starkey, Graham
Moshfegh, Sarina
Muthya, Ankita
D'Costa, Rohit
James, Fiona
Gordon, Claire L.
Jones, Robert
Afara, Isaac O.
Wood, Bayden R.
Raman, Jaishankar
author_facet Sharma, Varun J.
Adegoke, John A.
Fasulakis, Michael
Green, Alexander
Goh, Su K.
Peng, Xiuwen
Liu, Yifan
Jackett, Louise
Vago, Angela
Poon, Eric K. W.
Starkey, Graham
Moshfegh, Sarina
Muthya, Ankita
D'Costa, Rohit
James, Fiona
Gordon, Claire L.
Jones, Robert
Afara, Isaac O.
Wood, Bayden R.
Raman, Jaishankar
author_sort Sharma, Varun J.
collection PubMed
description INTRODUCTION: Visual assessment and imaging of the donor liver are inaccurate in predicting fibrosis and remain surrogates for histopathology. We demonstrate that 3‐s scans using a handheld near‐infrared‐spectroscopy (NIRS) instrument can identify and quantify fibrosis in fresh human liver samples. METHODS: We undertook NIRS scans on 107 samples from 27 patients, 88 from 23 patients with liver disease, and 19 from four organ donors. RESULTS: Liver disease patients had a median immature fibrosis of 40% (interquartile range [IQR] 20–60) and mature fibrosis of 30% (10%–50%) on histopathology. The organ donor livers had a median fibrosis (both mature and immature) of 10% (IQR 5%–15%). Using machine learning, this study detected presence of cirrhosis and METAVIR grade of fibrosis with a classification accuracy of 96.3% and 97.2%, precision of 96.3% and 97.0%, recall of 96.3% and 97.2%, specificity of 95.4% and 98.0% and area under receiver operator curve of 0.977 and 0.999, respectively. Using partial‐least square regression machine learning, this study predicted the percentage of both immature (R (2) = 0.842) and mature (R (2) = 0.837) with a low margin of error (root mean square of error of 9.76% and 7.96%, respectively). CONCLUSION: This study demonstrates that a point‐of‐care NIRS instrument can accurately detect, quantify and classify liver fibrosis using machine learning.
format Online
Article
Text
id pubmed-10618569
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-106185692023-11-02 Point‐of‐care detection of fibrosis in liver transplant surgery using near‐infrared spectroscopy and machine learning Sharma, Varun J. Adegoke, John A. Fasulakis, Michael Green, Alexander Goh, Su K. Peng, Xiuwen Liu, Yifan Jackett, Louise Vago, Angela Poon, Eric K. W. Starkey, Graham Moshfegh, Sarina Muthya, Ankita D'Costa, Rohit James, Fiona Gordon, Claire L. Jones, Robert Afara, Isaac O. Wood, Bayden R. Raman, Jaishankar Health Sci Rep Original Research INTRODUCTION: Visual assessment and imaging of the donor liver are inaccurate in predicting fibrosis and remain surrogates for histopathology. We demonstrate that 3‐s scans using a handheld near‐infrared‐spectroscopy (NIRS) instrument can identify and quantify fibrosis in fresh human liver samples. METHODS: We undertook NIRS scans on 107 samples from 27 patients, 88 from 23 patients with liver disease, and 19 from four organ donors. RESULTS: Liver disease patients had a median immature fibrosis of 40% (interquartile range [IQR] 20–60) and mature fibrosis of 30% (10%–50%) on histopathology. The organ donor livers had a median fibrosis (both mature and immature) of 10% (IQR 5%–15%). Using machine learning, this study detected presence of cirrhosis and METAVIR grade of fibrosis with a classification accuracy of 96.3% and 97.2%, precision of 96.3% and 97.0%, recall of 96.3% and 97.2%, specificity of 95.4% and 98.0% and area under receiver operator curve of 0.977 and 0.999, respectively. Using partial‐least square regression machine learning, this study predicted the percentage of both immature (R (2) = 0.842) and mature (R (2) = 0.837) with a low margin of error (root mean square of error of 9.76% and 7.96%, respectively). CONCLUSION: This study demonstrates that a point‐of‐care NIRS instrument can accurately detect, quantify and classify liver fibrosis using machine learning. John Wiley and Sons Inc. 2023-10-31 /pmc/articles/PMC10618569/ /pubmed/37920655 http://dx.doi.org/10.1002/hsr2.1652 Text en © 2023 The Authors. Health Science Reports published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Research
Sharma, Varun J.
Adegoke, John A.
Fasulakis, Michael
Green, Alexander
Goh, Su K.
Peng, Xiuwen
Liu, Yifan
Jackett, Louise
Vago, Angela
Poon, Eric K. W.
Starkey, Graham
Moshfegh, Sarina
Muthya, Ankita
D'Costa, Rohit
James, Fiona
Gordon, Claire L.
Jones, Robert
Afara, Isaac O.
Wood, Bayden R.
Raman, Jaishankar
Point‐of‐care detection of fibrosis in liver transplant surgery using near‐infrared spectroscopy and machine learning
title Point‐of‐care detection of fibrosis in liver transplant surgery using near‐infrared spectroscopy and machine learning
title_full Point‐of‐care detection of fibrosis in liver transplant surgery using near‐infrared spectroscopy and machine learning
title_fullStr Point‐of‐care detection of fibrosis in liver transplant surgery using near‐infrared spectroscopy and machine learning
title_full_unstemmed Point‐of‐care detection of fibrosis in liver transplant surgery using near‐infrared spectroscopy and machine learning
title_short Point‐of‐care detection of fibrosis in liver transplant surgery using near‐infrared spectroscopy and machine learning
title_sort point‐of‐care detection of fibrosis in liver transplant surgery using near‐infrared spectroscopy and machine learning
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618569/
https://www.ncbi.nlm.nih.gov/pubmed/37920655
http://dx.doi.org/10.1002/hsr2.1652
work_keys_str_mv AT sharmavarunj pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning
AT adegokejohna pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning
AT fasulakismichael pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning
AT greenalexander pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning
AT gohsuk pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning
AT pengxiuwen pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning
AT liuyifan pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning
AT jackettlouise pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning
AT vagoangela pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning
AT poonerickw pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning
AT starkeygraham pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning
AT moshfeghsarina pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning
AT muthyaankita pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning
AT dcostarohit pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning
AT jamesfiona pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning
AT gordonclairel pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning
AT jonesrobert pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning
AT afaraisaaco pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning
AT woodbaydenr pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning
AT ramanjaishankar pointofcaredetectionoffibrosisinlivertransplantsurgeryusingnearinfraredspectroscopyandmachinelearning