Cargando…

Genomic and Transcriptomic Landscape of an Oral Squamous Cell Carcinoma Mouse Model for Immunotherapy

The immune checkpoint inhibitor (ICI), anti–programmed death-1 (anti–PD-1), has shown moderate efficacy in some patients with head and neck squamous cell carcinoma (HNSCC). Because of this, it is imperative to establish a mouse tumor model to explore mechanisms of antitumor immunity and to develop n...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Yi-Mei, Hsu, Chia-Lang, Chen, Yu-Hsin, Ou, Da-Liang, Hsu, Chiun, Tan, Ching-Ting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for Cancer Research 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618654/
https://www.ncbi.nlm.nih.gov/pubmed/37669022
http://dx.doi.org/10.1158/2326-6066.CIR-23-0133
Descripción
Sumario:The immune checkpoint inhibitor (ICI), anti–programmed death-1 (anti–PD-1), has shown moderate efficacy in some patients with head and neck squamous cell carcinoma (HNSCC). Because of this, it is imperative to establish a mouse tumor model to explore mechanisms of antitumor immunity and to develop novel therapeutic options. Here, we examined the 4-nitroquinoline-1-oxide (4NQO)–induced oral squamous cell carcinoma (OSCC) model for genetic aberrations, transcriptomic profiles, and immune cell composition at different pathologic stages. Genomic exome analysis in OSCC-bearing mice showed conservation of critical mutations found in human HNSCC. Transcriptomic data revealed that a key signature comprised of immune-related genes was increased beginning at the moderate dysplasia stages. We first identified that macrophage composition in primary tumors differed across pathologic stages, leading to an oncogenic evolution through a change in the M1/M2 macrophage ratio during tumorigenesis. We treated the 4NQO-induced OSCC-bearing mice with anti–PD-1 and agonistic anti-CD40, which modulated multiple immune responses. The growth of tumor cells was significantly decreased by agonistic anti-CD40 by promoting an increase in the M1/M2 ratio. By examining cross-species genomic conservation in human and mouse tumors, our study demonstrates the molecular mechanisms underlying the development of OSCC and the regulation of contributing immune-related factors, and aims to facilitate the development of suitable ICI-based treatments for patients with HNSCC.