Cargando…
From monkeys to humans: observation-based EMG brain–computer interface decoders for humans with paralysis
Objective. Intracortical brain–computer interfaces (iBCIs) aim to enable individuals with paralysis to control the movement of virtual limbs and robotic arms. Because patients’ paralysis prevents training a direct neural activity to limb movement decoder, most iBCIs rely on ‘observation-based’ decod...
Autores principales: | Rizzoglio, Fabio, Altan, Ege, Ma, Xuan, Bodkin, Kevin L, Dekleva, Brian M, Solla, Sara A, Kennedy, Ann, Miller, Lee E |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOP Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618714/ https://www.ncbi.nlm.nih.gov/pubmed/37844567 http://dx.doi.org/10.1088/1741-2552/ad038e |
Ejemplares similares
-
Using adversarial networks to extend brain computer interface decoding accuracy over time
por: Ma, Xuan, et al.
Publicado: (2023) -
Hybrid Human-Machine Interface for Gait Decoding Through Bayesian Fusion of EEG and EMG Classifiers
por: Tortora, Stefano, et al.
Publicado: (2020) -
EOG-sEMG Human Interface for Communication
por: Tamura, Hiroki, et al.
Publicado: (2016) -
Enhanced Performance for Multi-Forearm Movement Decoding Using Hybrid IMU–sEMG Interface
por: Shahzad, Waseem, et al.
Publicado: (2019) -
Human-machine interfaces based on EMG and EEG applied to robotic systems
por: Ferreira, Andre, et al.
Publicado: (2008)