Cargando…
Assessing the Impact of Image Quality on Deep Learning Classification of Infectious Keratitis
OBJECTIVE: To investigate the impact of corneal photograph quality on convolutional neural network (CNN) predictions. DESIGN: A CNN trained to classify bacterial and fungal keratitis was evaluated using photographs of ulcers labeled according to 5 corneal image quality parameters: eccentric gaze dir...
Autores principales: | Hanif, Adam, Prajna, N. Venkatesh, Lalitha, Prajna, NaPier, Erin, Parker, Maria, Steinkamp, Peter, Keenan, Jeremy D., Campbell, J. Peter, Song, Xubo, Redd, Travis K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618822/ https://www.ncbi.nlm.nih.gov/pubmed/37920421 http://dx.doi.org/10.1016/j.xops.2023.100331 |
Ejemplares similares
-
Deep Convolutional Neural Networks Detect no Morphological Differences Between Culture-Positive and Culture-Negative Infectious Keratitis Images
por: Kogachi, Kaitlin, et al.
Publicado: (2023) -
Image-Based Differentiation of Bacterial and Fungal Keratitis Using Deep Convolutional Neural Networks
por: Redd, Travis K., et al.
Publicado: (2022) -
Fungal keratitis: The Aravind experience
por: Prajna, Venkatesh N, et al.
Publicado: (2017) -
Reply to Comment on: Fungal keratitis: The Aravind Experience
por: Prajna, Venkatesh N, et al.
Publicado: (2018) -
Comparative analysis of the tear protein profile in mycotic keratitis patients
por: Ananthi, Sivagnanam, et al.
Publicado: (2008)