Cargando…
Improved antioxidant activities of spice require enrichment of distinct yet closely-related metabolic pathways
Improved biosynthesis of commercially and pharmacologically relevant phytometabolites through genetic and metabolic engineering is a lucrative strategy for crop improvement. However, identifying appropriate biosynthetic pathways pertaining to specific bioactivities has been challenging since the maj...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618831/ https://www.ncbi.nlm.nih.gov/pubmed/37920519 http://dx.doi.org/10.1016/j.heliyon.2023.e21392 |
Sumario: | Improved biosynthesis of commercially and pharmacologically relevant phytometabolites through genetic and metabolic engineering is a lucrative strategy for crop improvement. However, identifying appropriate biosynthetic pathways pertaining to specific bioactivities has been challenging since the major metabolic pathways remain closely interconnected. Here we propose a reverse association strategy in which, based on the phytochemical profile, putative target metabolic pathways could be identified for increased production of phytochemicals. Dried seed fruits of Coriandrum sativum, Trachyspermum ammi, Cuminum cyminum, and Foeniculum vulgare (family Apiaceae) were subjected to untargeted gas chromatography-mass spectrometry-based phytochemical profiling followed by evaluation of the overall antioxidant profile using multiple antioxidant assays. Using bioinformatics approaches, specific phytochemical classes and the enrichment of their respective biosynthetic pathways were identified. Collectively, the data suggest enrichment of isoprenoids and fatty acids biosynthetic pathways. The close association of metabolic pathways with antioxidant capacities indicated a need for enrichment of specific yet closely-related metabolic pathways to achieve an improved quality of spices for better antioxidant effects. |
---|