Cargando…
Machine learning radiomics of magnetic resonance imaging predicts recurrence-free survival after surgery and correlation of LncRNAs in patients with breast cancer: a multicenter cohort study
BACKGROUND: Several studies have indicated that magnetic resonance imaging radiomics can predict survival in patients with breast cancer, but the potential biological underpinning remains indistinct. Herein, we aim to develop an interpretable deep-learning-based network for classifying recurrence ri...
Autores principales: | Yu, Yunfang, Ren, Wei, He, Zifan, Chen, Yongjian, Tan, Yujie, Mao, Luhui, Ouyang, Wenhao, Lu, Nian, Ouyang, Jie, Chen, Kai, Li, Chenchen, Zhang, Rong, Wu, Zhuo, Su, Fengxi, Wang, Zehua, Hu, Qiugen, Xie, Chuanmiao, Yao, Herui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619251/ https://www.ncbi.nlm.nih.gov/pubmed/37915093 http://dx.doi.org/10.1186/s13058-023-01688-3 |
Ejemplares similares
-
Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study
por: Yu, Yunfang, et al.
Publicado: (2021) -
A Noninvasive Tool Based on Magnetic Resonance Imaging Radiomics for the Preoperative Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer
por: Li, Chenchen, et al.
Publicado: (2022) -
Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics–Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer
por: Yu, Yunfang, et al.
Publicado: (2020) -
Magnetic resonance imaging radiomics signatures for predicting endocrine resistance in hormone receptor-positive non-metastatic breast cancer
por: Yang, Yaping, et al.
Publicado: (2021) -
Immune gene patterns and characterization of the tumor immune microenvironment associated with cancer immunotherapy efficacy
por: Lin, Lili, et al.
Publicado: (2023)