Cargando…
“A net for everyone”: fully personalized and unsupervised neural networks trained with longitudinal data from a single patient
BACKGROUND: With the rise in importance of personalized medicine and deep learning, we combine the two to create personalized neural networks. The aim of the study is to show a proof of concept that data from just one patient can be used to train deep neural networks to detect tumor progression in l...
Autores principales: | Strack, Christian, Pomykala, Kelsey L., Schlemmer, Heinz-Peter, Egger, Jan, Kleesiek, Jens |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619304/ https://www.ncbi.nlm.nih.gov/pubmed/37907876 http://dx.doi.org/10.1186/s12880-023-01128-w |
Ejemplares similares
-
Evaluation of thresholding methods for the quantification of [(68)Ga]Ga-PSMA-11 PET molecular tumor volume and their effect on survival prediction in patients with advanced prostate cancer undergoing [(177)Lu]Lu-PSMA-617 radioligand therapy
por: Kim, Moon, et al.
Publicado: (2023) -
Self-Organizing Neural Networks Based on OxRAM Devices under a Fully Unsupervised Training Scheme
por: Pedró, Marta, et al.
Publicado: (2019) -
Fully bayesian longitudinal unsupervised learning for the assessment and visualization of AD heterogeneity and progression
por: Poulakis, Konstantinos, et al.
Publicado: (2020) -
Sparse convolutional neural network for high-resolution skull shape completion and shape super-resolution
por: Li, Jianning, et al.
Publicado: (2023) -
Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke
por: Lambelet, Charles, et al.
Publicado: (2020)