Cargando…
Chromatic fusion: Generative multimodal neuroimaging data fusion provides multi‐informed insights into schizophrenia
This work proposes a novel generative multimodal approach to jointly analyze multimodal data while linking the multimodal information to colors. We apply our proposed framework, which disentangles multimodal data into private and shared sets of features from pairs of structural (sMRI), functional (s...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619380/ https://www.ncbi.nlm.nih.gov/pubmed/37753705 http://dx.doi.org/10.1002/hbm.26479 |
_version_ | 1785129976543051776 |
---|---|
author | Geenjaar, Eloy P.T. Lewis, Noah L. Fedorov, Alex Wu, Lei Ford, Judith M. Preda, Adrian Plis, Sergey M. Calhoun, Vince D. |
author_facet | Geenjaar, Eloy P.T. Lewis, Noah L. Fedorov, Alex Wu, Lei Ford, Judith M. Preda, Adrian Plis, Sergey M. Calhoun, Vince D. |
author_sort | Geenjaar, Eloy P.T. |
collection | PubMed |
description | This work proposes a novel generative multimodal approach to jointly analyze multimodal data while linking the multimodal information to colors. We apply our proposed framework, which disentangles multimodal data into private and shared sets of features from pairs of structural (sMRI), functional (sFNC and ICA), and diffusion MRI data (FA maps). With our approach, we find that heterogeneity in schizophrenia is potentially a function of modality pairs. Results show (1) schizophrenia is highly multimodal and includes changes in specific networks, (2) non‐linear relationships with schizophrenia are observed when interpolating among shared latent dimensions, and (3) we observe a decrease in the modularity of functional connectivity and decreased visual‐sensorimotor connectivity for schizophrenia patients for the FA‐sFNC and sMRI‐sFNC modality pairs, respectively. Additionally, our results generally indicate decreased fractional corpus callosum anisotropy, and decreased spatial ICA map and voxel‐based morphometry strength in the superior frontal lobe as found in the FA‐sFNC, sMRI‐FA, and sMRI‐ICA modality pair clusters. In sum, we introduce a powerful new multimodal neuroimaging framework designed to provide a rich and intuitive understanding of the data which we hope challenges the reader to think differently about how modalities interact. |
format | Online Article Text |
id | pubmed-10619380 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-106193802023-11-02 Chromatic fusion: Generative multimodal neuroimaging data fusion provides multi‐informed insights into schizophrenia Geenjaar, Eloy P.T. Lewis, Noah L. Fedorov, Alex Wu, Lei Ford, Judith M. Preda, Adrian Plis, Sergey M. Calhoun, Vince D. Hum Brain Mapp Research Articles This work proposes a novel generative multimodal approach to jointly analyze multimodal data while linking the multimodal information to colors. We apply our proposed framework, which disentangles multimodal data into private and shared sets of features from pairs of structural (sMRI), functional (sFNC and ICA), and diffusion MRI data (FA maps). With our approach, we find that heterogeneity in schizophrenia is potentially a function of modality pairs. Results show (1) schizophrenia is highly multimodal and includes changes in specific networks, (2) non‐linear relationships with schizophrenia are observed when interpolating among shared latent dimensions, and (3) we observe a decrease in the modularity of functional connectivity and decreased visual‐sensorimotor connectivity for schizophrenia patients for the FA‐sFNC and sMRI‐sFNC modality pairs, respectively. Additionally, our results generally indicate decreased fractional corpus callosum anisotropy, and decreased spatial ICA map and voxel‐based morphometry strength in the superior frontal lobe as found in the FA‐sFNC, sMRI‐FA, and sMRI‐ICA modality pair clusters. In sum, we introduce a powerful new multimodal neuroimaging framework designed to provide a rich and intuitive understanding of the data which we hope challenges the reader to think differently about how modalities interact. John Wiley & Sons, Inc. 2023-09-27 /pmc/articles/PMC10619380/ /pubmed/37753705 http://dx.doi.org/10.1002/hbm.26479 Text en © 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Geenjaar, Eloy P.T. Lewis, Noah L. Fedorov, Alex Wu, Lei Ford, Judith M. Preda, Adrian Plis, Sergey M. Calhoun, Vince D. Chromatic fusion: Generative multimodal neuroimaging data fusion provides multi‐informed insights into schizophrenia |
title | Chromatic fusion: Generative multimodal neuroimaging data fusion provides multi‐informed insights into schizophrenia |
title_full | Chromatic fusion: Generative multimodal neuroimaging data fusion provides multi‐informed insights into schizophrenia |
title_fullStr | Chromatic fusion: Generative multimodal neuroimaging data fusion provides multi‐informed insights into schizophrenia |
title_full_unstemmed | Chromatic fusion: Generative multimodal neuroimaging data fusion provides multi‐informed insights into schizophrenia |
title_short | Chromatic fusion: Generative multimodal neuroimaging data fusion provides multi‐informed insights into schizophrenia |
title_sort | chromatic fusion: generative multimodal neuroimaging data fusion provides multi‐informed insights into schizophrenia |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619380/ https://www.ncbi.nlm.nih.gov/pubmed/37753705 http://dx.doi.org/10.1002/hbm.26479 |
work_keys_str_mv | AT geenjaareloypt chromaticfusiongenerativemultimodalneuroimagingdatafusionprovidesmultiinformedinsightsintoschizophrenia AT lewisnoahl chromaticfusiongenerativemultimodalneuroimagingdatafusionprovidesmultiinformedinsightsintoschizophrenia AT fedorovalex chromaticfusiongenerativemultimodalneuroimagingdatafusionprovidesmultiinformedinsightsintoschizophrenia AT wulei chromaticfusiongenerativemultimodalneuroimagingdatafusionprovidesmultiinformedinsightsintoschizophrenia AT fordjudithm chromaticfusiongenerativemultimodalneuroimagingdatafusionprovidesmultiinformedinsightsintoschizophrenia AT predaadrian chromaticfusiongenerativemultimodalneuroimagingdatafusionprovidesmultiinformedinsightsintoschizophrenia AT plissergeym chromaticfusiongenerativemultimodalneuroimagingdatafusionprovidesmultiinformedinsightsintoschizophrenia AT calhounvinced chromaticfusiongenerativemultimodalneuroimagingdatafusionprovidesmultiinformedinsightsintoschizophrenia |