Cargando…

Chromatic fusion: Generative multimodal neuroimaging data fusion provides multi‐informed insights into schizophrenia

This work proposes a novel generative multimodal approach to jointly analyze multimodal data while linking the multimodal information to colors. We apply our proposed framework, which disentangles multimodal data into private and shared sets of features from pairs of structural (sMRI), functional (s...

Descripción completa

Detalles Bibliográficos
Autores principales: Geenjaar, Eloy P.T., Lewis, Noah L., Fedorov, Alex, Wu, Lei, Ford, Judith M., Preda, Adrian, Plis, Sergey M., Calhoun, Vince D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619380/
https://www.ncbi.nlm.nih.gov/pubmed/37753705
http://dx.doi.org/10.1002/hbm.26479
_version_ 1785129976543051776
author Geenjaar, Eloy P.T.
Lewis, Noah L.
Fedorov, Alex
Wu, Lei
Ford, Judith M.
Preda, Adrian
Plis, Sergey M.
Calhoun, Vince D.
author_facet Geenjaar, Eloy P.T.
Lewis, Noah L.
Fedorov, Alex
Wu, Lei
Ford, Judith M.
Preda, Adrian
Plis, Sergey M.
Calhoun, Vince D.
author_sort Geenjaar, Eloy P.T.
collection PubMed
description This work proposes a novel generative multimodal approach to jointly analyze multimodal data while linking the multimodal information to colors. We apply our proposed framework, which disentangles multimodal data into private and shared sets of features from pairs of structural (sMRI), functional (sFNC and ICA), and diffusion MRI data (FA maps). With our approach, we find that heterogeneity in schizophrenia is potentially a function of modality pairs. Results show (1) schizophrenia is highly multimodal and includes changes in specific networks, (2) non‐linear relationships with schizophrenia are observed when interpolating among shared latent dimensions, and (3) we observe a decrease in the modularity of functional connectivity and decreased visual‐sensorimotor connectivity for schizophrenia patients for the FA‐sFNC and sMRI‐sFNC modality pairs, respectively. Additionally, our results generally indicate decreased fractional corpus callosum anisotropy, and decreased spatial ICA map and voxel‐based morphometry strength in the superior frontal lobe as found in the FA‐sFNC, sMRI‐FA, and sMRI‐ICA modality pair clusters. In sum, we introduce a powerful new multimodal neuroimaging framework designed to provide a rich and intuitive understanding of the data which we hope challenges the reader to think differently about how modalities interact.
format Online
Article
Text
id pubmed-10619380
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-106193802023-11-02 Chromatic fusion: Generative multimodal neuroimaging data fusion provides multi‐informed insights into schizophrenia Geenjaar, Eloy P.T. Lewis, Noah L. Fedorov, Alex Wu, Lei Ford, Judith M. Preda, Adrian Plis, Sergey M. Calhoun, Vince D. Hum Brain Mapp Research Articles This work proposes a novel generative multimodal approach to jointly analyze multimodal data while linking the multimodal information to colors. We apply our proposed framework, which disentangles multimodal data into private and shared sets of features from pairs of structural (sMRI), functional (sFNC and ICA), and diffusion MRI data (FA maps). With our approach, we find that heterogeneity in schizophrenia is potentially a function of modality pairs. Results show (1) schizophrenia is highly multimodal and includes changes in specific networks, (2) non‐linear relationships with schizophrenia are observed when interpolating among shared latent dimensions, and (3) we observe a decrease in the modularity of functional connectivity and decreased visual‐sensorimotor connectivity for schizophrenia patients for the FA‐sFNC and sMRI‐sFNC modality pairs, respectively. Additionally, our results generally indicate decreased fractional corpus callosum anisotropy, and decreased spatial ICA map and voxel‐based morphometry strength in the superior frontal lobe as found in the FA‐sFNC, sMRI‐FA, and sMRI‐ICA modality pair clusters. In sum, we introduce a powerful new multimodal neuroimaging framework designed to provide a rich and intuitive understanding of the data which we hope challenges the reader to think differently about how modalities interact. John Wiley & Sons, Inc. 2023-09-27 /pmc/articles/PMC10619380/ /pubmed/37753705 http://dx.doi.org/10.1002/hbm.26479 Text en © 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Research Articles
Geenjaar, Eloy P.T.
Lewis, Noah L.
Fedorov, Alex
Wu, Lei
Ford, Judith M.
Preda, Adrian
Plis, Sergey M.
Calhoun, Vince D.
Chromatic fusion: Generative multimodal neuroimaging data fusion provides multi‐informed insights into schizophrenia
title Chromatic fusion: Generative multimodal neuroimaging data fusion provides multi‐informed insights into schizophrenia
title_full Chromatic fusion: Generative multimodal neuroimaging data fusion provides multi‐informed insights into schizophrenia
title_fullStr Chromatic fusion: Generative multimodal neuroimaging data fusion provides multi‐informed insights into schizophrenia
title_full_unstemmed Chromatic fusion: Generative multimodal neuroimaging data fusion provides multi‐informed insights into schizophrenia
title_short Chromatic fusion: Generative multimodal neuroimaging data fusion provides multi‐informed insights into schizophrenia
title_sort chromatic fusion: generative multimodal neuroimaging data fusion provides multi‐informed insights into schizophrenia
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619380/
https://www.ncbi.nlm.nih.gov/pubmed/37753705
http://dx.doi.org/10.1002/hbm.26479
work_keys_str_mv AT geenjaareloypt chromaticfusiongenerativemultimodalneuroimagingdatafusionprovidesmultiinformedinsightsintoschizophrenia
AT lewisnoahl chromaticfusiongenerativemultimodalneuroimagingdatafusionprovidesmultiinformedinsightsintoschizophrenia
AT fedorovalex chromaticfusiongenerativemultimodalneuroimagingdatafusionprovidesmultiinformedinsightsintoschizophrenia
AT wulei chromaticfusiongenerativemultimodalneuroimagingdatafusionprovidesmultiinformedinsightsintoschizophrenia
AT fordjudithm chromaticfusiongenerativemultimodalneuroimagingdatafusionprovidesmultiinformedinsightsintoschizophrenia
AT predaadrian chromaticfusiongenerativemultimodalneuroimagingdatafusionprovidesmultiinformedinsightsintoschizophrenia
AT plissergeym chromaticfusiongenerativemultimodalneuroimagingdatafusionprovidesmultiinformedinsightsintoschizophrenia
AT calhounvinced chromaticfusiongenerativemultimodalneuroimagingdatafusionprovidesmultiinformedinsightsintoschizophrenia