Cargando…
Unsupervised contrastive graph learning for resting‐state functional MRI analysis and brain disorder detection
Resting‐state functional magnetic resonance imaging (rs‐fMRI) helps characterize regional interactions that occur in the human brain at a resting state. Existing research often attempts to explore fMRI biomarkers that best predict brain disease progression using machine/deep learning techniques. Pre...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619386/ https://www.ncbi.nlm.nih.gov/pubmed/37668327 http://dx.doi.org/10.1002/hbm.26469 |
_version_ | 1785129977983795200 |
---|---|
author | Wang, Xiaochuan Chu, Ying Wang, Qianqian Cao, Liang Qiao, Lishan Zhang, Limei Liu, Mingxia |
author_facet | Wang, Xiaochuan Chu, Ying Wang, Qianqian Cao, Liang Qiao, Lishan Zhang, Limei Liu, Mingxia |
author_sort | Wang, Xiaochuan |
collection | PubMed |
description | Resting‐state functional magnetic resonance imaging (rs‐fMRI) helps characterize regional interactions that occur in the human brain at a resting state. Existing research often attempts to explore fMRI biomarkers that best predict brain disease progression using machine/deep learning techniques. Previous fMRI studies have shown that learning‐based methods usually require a large amount of labeled training data, limiting their utility in clinical practice where annotating data is often time‐consuming and labor‐intensive. To this end, we propose an unsupervised contrastive graph learning (UCGL) framework for fMRI‐based brain disease analysis, in which a pretext model is designed to generate informative fMRI representations using unlabeled training data, followed by model fine‐tuning to perform downstream disease identification tasks. Specifically, in the pretext model, we first design a bi‐level fMRI augmentation strategy to increase the sample size by augmenting blood‐oxygen‐level‐dependent (BOLD) signals, and then employ two parallel graph convolutional networks for fMRI feature extraction in an unsupervised contrastive learning manner. This pretext model can be optimized on large‐scale fMRI datasets, without requiring labeled training data. This model is further fine‐tuned on to‐be‐analyzed fMRI data for downstream disease detection in a task‐oriented learning manner. We evaluate the proposed method on three rs‐fMRI datasets for cross‐site and cross‐dataset learning tasks. Experimental results suggest that the UCGL outperforms several state‐of‐the‐art approaches in automated diagnosis of three brain diseases (i.e., major depressive disorder, autism spectrum disorder, and Alzheimer's disease) with rs‐fMRI data. |
format | Online Article Text |
id | pubmed-10619386 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-106193862023-11-02 Unsupervised contrastive graph learning for resting‐state functional MRI analysis and brain disorder detection Wang, Xiaochuan Chu, Ying Wang, Qianqian Cao, Liang Qiao, Lishan Zhang, Limei Liu, Mingxia Hum Brain Mapp Research Articles Resting‐state functional magnetic resonance imaging (rs‐fMRI) helps characterize regional interactions that occur in the human brain at a resting state. Existing research often attempts to explore fMRI biomarkers that best predict brain disease progression using machine/deep learning techniques. Previous fMRI studies have shown that learning‐based methods usually require a large amount of labeled training data, limiting their utility in clinical practice where annotating data is often time‐consuming and labor‐intensive. To this end, we propose an unsupervised contrastive graph learning (UCGL) framework for fMRI‐based brain disease analysis, in which a pretext model is designed to generate informative fMRI representations using unlabeled training data, followed by model fine‐tuning to perform downstream disease identification tasks. Specifically, in the pretext model, we first design a bi‐level fMRI augmentation strategy to increase the sample size by augmenting blood‐oxygen‐level‐dependent (BOLD) signals, and then employ two parallel graph convolutional networks for fMRI feature extraction in an unsupervised contrastive learning manner. This pretext model can be optimized on large‐scale fMRI datasets, without requiring labeled training data. This model is further fine‐tuned on to‐be‐analyzed fMRI data for downstream disease detection in a task‐oriented learning manner. We evaluate the proposed method on three rs‐fMRI datasets for cross‐site and cross‐dataset learning tasks. Experimental results suggest that the UCGL outperforms several state‐of‐the‐art approaches in automated diagnosis of three brain diseases (i.e., major depressive disorder, autism spectrum disorder, and Alzheimer's disease) with rs‐fMRI data. John Wiley & Sons, Inc. 2023-09-05 /pmc/articles/PMC10619386/ /pubmed/37668327 http://dx.doi.org/10.1002/hbm.26469 Text en © 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Wang, Xiaochuan Chu, Ying Wang, Qianqian Cao, Liang Qiao, Lishan Zhang, Limei Liu, Mingxia Unsupervised contrastive graph learning for resting‐state functional MRI analysis and brain disorder detection |
title | Unsupervised contrastive graph learning for resting‐state functional MRI analysis and brain disorder detection |
title_full | Unsupervised contrastive graph learning for resting‐state functional MRI analysis and brain disorder detection |
title_fullStr | Unsupervised contrastive graph learning for resting‐state functional MRI analysis and brain disorder detection |
title_full_unstemmed | Unsupervised contrastive graph learning for resting‐state functional MRI analysis and brain disorder detection |
title_short | Unsupervised contrastive graph learning for resting‐state functional MRI analysis and brain disorder detection |
title_sort | unsupervised contrastive graph learning for resting‐state functional mri analysis and brain disorder detection |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619386/ https://www.ncbi.nlm.nih.gov/pubmed/37668327 http://dx.doi.org/10.1002/hbm.26469 |
work_keys_str_mv | AT wangxiaochuan unsupervisedcontrastivegraphlearningforrestingstatefunctionalmrianalysisandbraindisorderdetection AT chuying unsupervisedcontrastivegraphlearningforrestingstatefunctionalmrianalysisandbraindisorderdetection AT wangqianqian unsupervisedcontrastivegraphlearningforrestingstatefunctionalmrianalysisandbraindisorderdetection AT caoliang unsupervisedcontrastivegraphlearningforrestingstatefunctionalmrianalysisandbraindisorderdetection AT qiaolishan unsupervisedcontrastivegraphlearningforrestingstatefunctionalmrianalysisandbraindisorderdetection AT zhanglimei unsupervisedcontrastivegraphlearningforrestingstatefunctionalmrianalysisandbraindisorderdetection AT liumingxia unsupervisedcontrastivegraphlearningforrestingstatefunctionalmrianalysisandbraindisorderdetection |