Cargando…
Unsupervised contrastive graph learning for resting‐state functional MRI analysis and brain disorder detection
Resting‐state functional magnetic resonance imaging (rs‐fMRI) helps characterize regional interactions that occur in the human brain at a resting state. Existing research often attempts to explore fMRI biomarkers that best predict brain disease progression using machine/deep learning techniques. Pre...
Autores principales: | Wang, Xiaochuan, Chu, Ying, Wang, Qianqian, Cao, Liang, Qiao, Lishan, Zhang, Limei, Liu, Mingxia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619386/ https://www.ncbi.nlm.nih.gov/pubmed/37668327 http://dx.doi.org/10.1002/hbm.26469 |
Ejemplares similares
-
Resting-State Functional MRI Adaptation with Attention Graph Convolution Network for Brain Disorder Identification
por: Chu, Ying, et al.
Publicado: (2022) -
Multi-Scale Graph Representation Learning for Autism Identification With Functional MRI
por: Chu, Ying, et al.
Publicado: (2022) -
GUBS: Graph-Based Unsupervised Brain Segmentation in MRI Images
por: Mayala, Simeon, et al.
Publicado: (2022) -
Graph-Based Network Analysis of Resting-State Functional MRI
por: Wang, Jinhui, et al.
Publicado: (2010) -
Fusing Multiview Functional Brain Networks by Joint Embedding for Brain Disease Identification
por: Wang, Chengcheng, et al.
Publicado: (2023)