Cargando…

Identifying canonical and replicable multi‐scale intrinsic connectivity networks in 100k+ resting‐state fMRI datasets

Despite the known benefits of data‐driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter‐subject correspondence limits the clinical utility of rsfMRI and its application to single‐subject analyses. Here, using rsf...

Descripción completa

Detalles Bibliográficos
Autores principales: Iraji, A., Fu, Z., Faghiri, A., Duda, M., Chen, J., Rachakonda, S., DeRamus, T., Kochunov, P., Adhikari, B. M., Belger, A., Ford, J. M., Mathalon, D. H., Pearlson, G. D., Potkin, S. G., Preda, A., Turner, J. A., van Erp, T. G. M., Bustillo, J. R., Yang, K., Ishizuka, K., Faria, A., Sawa, A., Hutchison, K., Osuch, E. A., Theberge, J., Abbott, C., Mueller, B. A., Zhi, D., Zhuo, C., Liu, S., Xu, Y., Salman, M., Liu, J., Du, Y., Sui, J., Adali, T., Calhoun, V. D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619392/
https://www.ncbi.nlm.nih.gov/pubmed/37787573
http://dx.doi.org/10.1002/hbm.26472
_version_ 1785129979226357760
author Iraji, A.
Fu, Z.
Faghiri, A.
Duda, M.
Chen, J.
Rachakonda, S.
DeRamus, T.
Kochunov, P.
Adhikari, B. M.
Belger, A.
Ford, J. M.
Mathalon, D. H.
Pearlson, G. D.
Potkin, S. G.
Preda, A.
Turner, J. A.
van Erp, T. G. M.
Bustillo, J. R.
Yang, K.
Ishizuka, K.
Faria, A.
Sawa, A.
Hutchison, K.
Osuch, E. A.
Theberge, J.
Abbott, C.
Mueller, B. A.
Zhi, D.
Zhuo, C.
Liu, S.
Xu, Y.
Salman, M.
Liu, J.
Du, Y.
Sui, J.
Adali, T.
Calhoun, V. D.
author_facet Iraji, A.
Fu, Z.
Faghiri, A.
Duda, M.
Chen, J.
Rachakonda, S.
DeRamus, T.
Kochunov, P.
Adhikari, B. M.
Belger, A.
Ford, J. M.
Mathalon, D. H.
Pearlson, G. D.
Potkin, S. G.
Preda, A.
Turner, J. A.
van Erp, T. G. M.
Bustillo, J. R.
Yang, K.
Ishizuka, K.
Faria, A.
Sawa, A.
Hutchison, K.
Osuch, E. A.
Theberge, J.
Abbott, C.
Mueller, B. A.
Zhi, D.
Zhuo, C.
Liu, S.
Xu, Y.
Salman, M.
Liu, J.
Du, Y.
Sui, J.
Adali, T.
Calhoun, V. D.
author_sort Iraji, A.
collection PubMed
description Despite the known benefits of data‐driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter‐subject correspondence limits the clinical utility of rsfMRI and its application to single‐subject analyses. Here, using rsfMRI data from over 100k individuals across private and public datasets, we identify replicable multi‐spatial‐scale canonical intrinsic connectivity network (ICN) templates via the use of multi‐model‐order independent component analysis (ICA). We also study the feasibility of estimating subject‐specific ICNs via spatially constrained ICA. The results show that the subject‐level ICN estimations vary as a function of the ICN itself, the data length, and the spatial resolution. In general, large‐scale ICNs require less data to achieve specific levels of (within‐ and between‐subject) spatial similarity with their templates. Importantly, increasing data length can reduce an ICN's subject‐level specificity, suggesting longer scans may not always be desirable. We also find a positive linear relationship between data length and spatial smoothness (possibly due to averaging over intrinsic dynamics), suggesting studies examining optimized data length should consider spatial smoothness. Finally, consistency in spatial similarity between ICNs estimated using the full data and subsets across different data lengths suggests lower within‐subject spatial similarity in shorter data is not wholly defined by lower reliability in ICN estimates, but may be an indication of meaningful brain dynamics which average out as data length increases.
format Online
Article
Text
id pubmed-10619392
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-106193922023-11-02 Identifying canonical and replicable multi‐scale intrinsic connectivity networks in 100k+ resting‐state fMRI datasets Iraji, A. Fu, Z. Faghiri, A. Duda, M. Chen, J. Rachakonda, S. DeRamus, T. Kochunov, P. Adhikari, B. M. Belger, A. Ford, J. M. Mathalon, D. H. Pearlson, G. D. Potkin, S. G. Preda, A. Turner, J. A. van Erp, T. G. M. Bustillo, J. R. Yang, K. Ishizuka, K. Faria, A. Sawa, A. Hutchison, K. Osuch, E. A. Theberge, J. Abbott, C. Mueller, B. A. Zhi, D. Zhuo, C. Liu, S. Xu, Y. Salman, M. Liu, J. Du, Y. Sui, J. Adali, T. Calhoun, V. D. Hum Brain Mapp Research Articles Despite the known benefits of data‐driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter‐subject correspondence limits the clinical utility of rsfMRI and its application to single‐subject analyses. Here, using rsfMRI data from over 100k individuals across private and public datasets, we identify replicable multi‐spatial‐scale canonical intrinsic connectivity network (ICN) templates via the use of multi‐model‐order independent component analysis (ICA). We also study the feasibility of estimating subject‐specific ICNs via spatially constrained ICA. The results show that the subject‐level ICN estimations vary as a function of the ICN itself, the data length, and the spatial resolution. In general, large‐scale ICNs require less data to achieve specific levels of (within‐ and between‐subject) spatial similarity with their templates. Importantly, increasing data length can reduce an ICN's subject‐level specificity, suggesting longer scans may not always be desirable. We also find a positive linear relationship between data length and spatial smoothness (possibly due to averaging over intrinsic dynamics), suggesting studies examining optimized data length should consider spatial smoothness. Finally, consistency in spatial similarity between ICNs estimated using the full data and subsets across different data lengths suggests lower within‐subject spatial similarity in shorter data is not wholly defined by lower reliability in ICN estimates, but may be an indication of meaningful brain dynamics which average out as data length increases. John Wiley & Sons, Inc. 2023-10-03 /pmc/articles/PMC10619392/ /pubmed/37787573 http://dx.doi.org/10.1002/hbm.26472 Text en © 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Research Articles
Iraji, A.
Fu, Z.
Faghiri, A.
Duda, M.
Chen, J.
Rachakonda, S.
DeRamus, T.
Kochunov, P.
Adhikari, B. M.
Belger, A.
Ford, J. M.
Mathalon, D. H.
Pearlson, G. D.
Potkin, S. G.
Preda, A.
Turner, J. A.
van Erp, T. G. M.
Bustillo, J. R.
Yang, K.
Ishizuka, K.
Faria, A.
Sawa, A.
Hutchison, K.
Osuch, E. A.
Theberge, J.
Abbott, C.
Mueller, B. A.
Zhi, D.
Zhuo, C.
Liu, S.
Xu, Y.
Salman, M.
Liu, J.
Du, Y.
Sui, J.
Adali, T.
Calhoun, V. D.
Identifying canonical and replicable multi‐scale intrinsic connectivity networks in 100k+ resting‐state fMRI datasets
title Identifying canonical and replicable multi‐scale intrinsic connectivity networks in 100k+ resting‐state fMRI datasets
title_full Identifying canonical and replicable multi‐scale intrinsic connectivity networks in 100k+ resting‐state fMRI datasets
title_fullStr Identifying canonical and replicable multi‐scale intrinsic connectivity networks in 100k+ resting‐state fMRI datasets
title_full_unstemmed Identifying canonical and replicable multi‐scale intrinsic connectivity networks in 100k+ resting‐state fMRI datasets
title_short Identifying canonical and replicable multi‐scale intrinsic connectivity networks in 100k+ resting‐state fMRI datasets
title_sort identifying canonical and replicable multi‐scale intrinsic connectivity networks in 100k+ resting‐state fmri datasets
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619392/
https://www.ncbi.nlm.nih.gov/pubmed/37787573
http://dx.doi.org/10.1002/hbm.26472
work_keys_str_mv AT irajia identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT fuz identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT faghiria identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT dudam identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT chenj identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT rachakondas identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT deramust identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT kochunovp identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT adhikaribm identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT belgera identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT fordjm identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT mathalondh identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT pearlsongd identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT potkinsg identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT predaa identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT turnerja identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT vanerptgm identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT bustillojr identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT yangk identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT ishizukak identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT fariaa identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT sawaa identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT hutchisonk identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT osuchea identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT thebergej identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT abbottc identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT muellerba identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT zhid identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT zhuoc identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT lius identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT xuy identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT salmanm identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT liuj identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT duy identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT suij identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT adalit identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets
AT calhounvd identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets