Cargando…
Identifying canonical and replicable multi‐scale intrinsic connectivity networks in 100k+ resting‐state fMRI datasets
Despite the known benefits of data‐driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter‐subject correspondence limits the clinical utility of rsfMRI and its application to single‐subject analyses. Here, using rsf...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619392/ https://www.ncbi.nlm.nih.gov/pubmed/37787573 http://dx.doi.org/10.1002/hbm.26472 |
_version_ | 1785129979226357760 |
---|---|
author | Iraji, A. Fu, Z. Faghiri, A. Duda, M. Chen, J. Rachakonda, S. DeRamus, T. Kochunov, P. Adhikari, B. M. Belger, A. Ford, J. M. Mathalon, D. H. Pearlson, G. D. Potkin, S. G. Preda, A. Turner, J. A. van Erp, T. G. M. Bustillo, J. R. Yang, K. Ishizuka, K. Faria, A. Sawa, A. Hutchison, K. Osuch, E. A. Theberge, J. Abbott, C. Mueller, B. A. Zhi, D. Zhuo, C. Liu, S. Xu, Y. Salman, M. Liu, J. Du, Y. Sui, J. Adali, T. Calhoun, V. D. |
author_facet | Iraji, A. Fu, Z. Faghiri, A. Duda, M. Chen, J. Rachakonda, S. DeRamus, T. Kochunov, P. Adhikari, B. M. Belger, A. Ford, J. M. Mathalon, D. H. Pearlson, G. D. Potkin, S. G. Preda, A. Turner, J. A. van Erp, T. G. M. Bustillo, J. R. Yang, K. Ishizuka, K. Faria, A. Sawa, A. Hutchison, K. Osuch, E. A. Theberge, J. Abbott, C. Mueller, B. A. Zhi, D. Zhuo, C. Liu, S. Xu, Y. Salman, M. Liu, J. Du, Y. Sui, J. Adali, T. Calhoun, V. D. |
author_sort | Iraji, A. |
collection | PubMed |
description | Despite the known benefits of data‐driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter‐subject correspondence limits the clinical utility of rsfMRI and its application to single‐subject analyses. Here, using rsfMRI data from over 100k individuals across private and public datasets, we identify replicable multi‐spatial‐scale canonical intrinsic connectivity network (ICN) templates via the use of multi‐model‐order independent component analysis (ICA). We also study the feasibility of estimating subject‐specific ICNs via spatially constrained ICA. The results show that the subject‐level ICN estimations vary as a function of the ICN itself, the data length, and the spatial resolution. In general, large‐scale ICNs require less data to achieve specific levels of (within‐ and between‐subject) spatial similarity with their templates. Importantly, increasing data length can reduce an ICN's subject‐level specificity, suggesting longer scans may not always be desirable. We also find a positive linear relationship between data length and spatial smoothness (possibly due to averaging over intrinsic dynamics), suggesting studies examining optimized data length should consider spatial smoothness. Finally, consistency in spatial similarity between ICNs estimated using the full data and subsets across different data lengths suggests lower within‐subject spatial similarity in shorter data is not wholly defined by lower reliability in ICN estimates, but may be an indication of meaningful brain dynamics which average out as data length increases. |
format | Online Article Text |
id | pubmed-10619392 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-106193922023-11-02 Identifying canonical and replicable multi‐scale intrinsic connectivity networks in 100k+ resting‐state fMRI datasets Iraji, A. Fu, Z. Faghiri, A. Duda, M. Chen, J. Rachakonda, S. DeRamus, T. Kochunov, P. Adhikari, B. M. Belger, A. Ford, J. M. Mathalon, D. H. Pearlson, G. D. Potkin, S. G. Preda, A. Turner, J. A. van Erp, T. G. M. Bustillo, J. R. Yang, K. Ishizuka, K. Faria, A. Sawa, A. Hutchison, K. Osuch, E. A. Theberge, J. Abbott, C. Mueller, B. A. Zhi, D. Zhuo, C. Liu, S. Xu, Y. Salman, M. Liu, J. Du, Y. Sui, J. Adali, T. Calhoun, V. D. Hum Brain Mapp Research Articles Despite the known benefits of data‐driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter‐subject correspondence limits the clinical utility of rsfMRI and its application to single‐subject analyses. Here, using rsfMRI data from over 100k individuals across private and public datasets, we identify replicable multi‐spatial‐scale canonical intrinsic connectivity network (ICN) templates via the use of multi‐model‐order independent component analysis (ICA). We also study the feasibility of estimating subject‐specific ICNs via spatially constrained ICA. The results show that the subject‐level ICN estimations vary as a function of the ICN itself, the data length, and the spatial resolution. In general, large‐scale ICNs require less data to achieve specific levels of (within‐ and between‐subject) spatial similarity with their templates. Importantly, increasing data length can reduce an ICN's subject‐level specificity, suggesting longer scans may not always be desirable. We also find a positive linear relationship between data length and spatial smoothness (possibly due to averaging over intrinsic dynamics), suggesting studies examining optimized data length should consider spatial smoothness. Finally, consistency in spatial similarity between ICNs estimated using the full data and subsets across different data lengths suggests lower within‐subject spatial similarity in shorter data is not wholly defined by lower reliability in ICN estimates, but may be an indication of meaningful brain dynamics which average out as data length increases. John Wiley & Sons, Inc. 2023-10-03 /pmc/articles/PMC10619392/ /pubmed/37787573 http://dx.doi.org/10.1002/hbm.26472 Text en © 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Iraji, A. Fu, Z. Faghiri, A. Duda, M. Chen, J. Rachakonda, S. DeRamus, T. Kochunov, P. Adhikari, B. M. Belger, A. Ford, J. M. Mathalon, D. H. Pearlson, G. D. Potkin, S. G. Preda, A. Turner, J. A. van Erp, T. G. M. Bustillo, J. R. Yang, K. Ishizuka, K. Faria, A. Sawa, A. Hutchison, K. Osuch, E. A. Theberge, J. Abbott, C. Mueller, B. A. Zhi, D. Zhuo, C. Liu, S. Xu, Y. Salman, M. Liu, J. Du, Y. Sui, J. Adali, T. Calhoun, V. D. Identifying canonical and replicable multi‐scale intrinsic connectivity networks in 100k+ resting‐state fMRI datasets |
title | Identifying canonical and replicable multi‐scale intrinsic connectivity networks in 100k+ resting‐state fMRI datasets |
title_full | Identifying canonical and replicable multi‐scale intrinsic connectivity networks in 100k+ resting‐state fMRI datasets |
title_fullStr | Identifying canonical and replicable multi‐scale intrinsic connectivity networks in 100k+ resting‐state fMRI datasets |
title_full_unstemmed | Identifying canonical and replicable multi‐scale intrinsic connectivity networks in 100k+ resting‐state fMRI datasets |
title_short | Identifying canonical and replicable multi‐scale intrinsic connectivity networks in 100k+ resting‐state fMRI datasets |
title_sort | identifying canonical and replicable multi‐scale intrinsic connectivity networks in 100k+ resting‐state fmri datasets |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619392/ https://www.ncbi.nlm.nih.gov/pubmed/37787573 http://dx.doi.org/10.1002/hbm.26472 |
work_keys_str_mv | AT irajia identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT fuz identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT faghiria identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT dudam identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT chenj identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT rachakondas identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT deramust identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT kochunovp identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT adhikaribm identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT belgera identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT fordjm identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT mathalondh identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT pearlsongd identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT potkinsg identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT predaa identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT turnerja identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT vanerptgm identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT bustillojr identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT yangk identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT ishizukak identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT fariaa identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT sawaa identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT hutchisonk identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT osuchea identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT thebergej identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT abbottc identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT muellerba identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT zhid identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT zhuoc identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT lius identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT xuy identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT salmanm identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT liuj identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT duy identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT suij identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT adalit identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets AT calhounvd identifyingcanonicalandreplicablemultiscaleintrinsicconnectivitynetworksin100krestingstatefmridatasets |