Cargando…
Denoising task‐related fMRI: Balancing noise reduction against signal loss
Preprocessing fMRI data requires striking a fine balance between conserving signals of interest and removing noise. Typical steps of preprocessing include motion correction, slice timing correction, spatial smoothing, and high‐pass filtering. However, these standard steps do not remove many sources...
Autores principales: | Hoeppli, M. E., Garenfeld, M. A., Mortensen, C. K., Nahman‐Averbuch, H., King, C. D., Coghill, R. C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619396/ https://www.ncbi.nlm.nih.gov/pubmed/37753711 http://dx.doi.org/10.1002/hbm.26447 |
Ejemplares similares
-
Dissociation between individual differences in self-reported pain intensity and underlying fMRI brain activation
por: Hoeppli, M. E., et al.
Publicado: (2022) -
GLMdenoise: a fast, automated technique for denoising task-based fMRI data
por: Kay, Kendrick N., et al.
Publicado: (2013) -
Denoising task-correlated head motion from motor-task fMRI data with multi-echo ICA
por: Reddy, Neha A., et al.
Publicado: (2023) -
Physiological Noise in Brainstem fMRI
por: Brooks, Jonathan C. W., et al.
Publicado: (2013) -
BOLD Noise Assumptions in fMRI
por: Wink, Alle Meije, et al.
Publicado: (2006)