Cargando…
Thermal acclimation and habitat-dependent differences in temperature robustness of a crustacean motor circuit
INTRODUCTION: At the cellular level, acute temperature changes alter ionic conductances, ion channel kinetics, and the activity of entire neuronal circuits. This can result in severe consequences for neural function, animal behavior and survival. In poikilothermic animals, and particularly in aquati...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619761/ https://www.ncbi.nlm.nih.gov/pubmed/37920203 http://dx.doi.org/10.3389/fncel.2023.1263591 |
_version_ | 1785130056794767360 |
---|---|
author | Stein, Wolfgang Torres, Gabriela Giménez, Luis Espinosa-Novo, Noé Geißel, Jan Phillipp Vidal-Gadea, Andrés Harzsch, Steffen |
author_facet | Stein, Wolfgang Torres, Gabriela Giménez, Luis Espinosa-Novo, Noé Geißel, Jan Phillipp Vidal-Gadea, Andrés Harzsch, Steffen |
author_sort | Stein, Wolfgang |
collection | PubMed |
description | INTRODUCTION: At the cellular level, acute temperature changes alter ionic conductances, ion channel kinetics, and the activity of entire neuronal circuits. This can result in severe consequences for neural function, animal behavior and survival. In poikilothermic animals, and particularly in aquatic species whose core temperature equals the surrounding water temperature, neurons experience rather rapid and wide-ranging temperature fluctuations. Recent work on pattern generating neural circuits in the crustacean stomatogastric nervous system have demonstrated that neuronal circuits can exhibit an intrinsic robustness to temperature fluctuations. However, considering the increased warming of the oceans and recurring heatwaves due to climate change, the question arises whether this intrinsic robustness can acclimate to changing environmental conditions, and whether it differs between species and ocean habitats. METHODS: We address these questions using the pyloric pattern generating circuits in the stomatogastric nervous system of two crab species, Hemigrapsus sanguineus and Carcinus maenas that have seen a worldwide expansion in recent decades. RESULTS AND DISCUSSION: Consistent with their history as invasive species, we find that pyloric activity showed a broad temperature robustness (>30°C). Moreover, the temperature-robust range was dependent on habitat temperature in both species. Warm-acclimating animals shifted the critical temperature at which circuit activity breaks down to higher temperatures. This came at the cost of robustness against cold stimuli in H. sanguineus, but not in C. maenas. Comparing the temperature responses of C. maenas from a cold latitude (the North Sea) to those from a warm latitude (Spain) demonstrated that similar shifts in robustness occurred in natural environments. Our results thus demonstrate that neuronal temperature robustness correlates with, and responds to, environmental temperature conditions, potentially preparing animals for changing ecological conditions and shifting habitats. |
format | Online Article Text |
id | pubmed-10619761 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-106197612023-11-02 Thermal acclimation and habitat-dependent differences in temperature robustness of a crustacean motor circuit Stein, Wolfgang Torres, Gabriela Giménez, Luis Espinosa-Novo, Noé Geißel, Jan Phillipp Vidal-Gadea, Andrés Harzsch, Steffen Front Cell Neurosci Cellular Neuroscience INTRODUCTION: At the cellular level, acute temperature changes alter ionic conductances, ion channel kinetics, and the activity of entire neuronal circuits. This can result in severe consequences for neural function, animal behavior and survival. In poikilothermic animals, and particularly in aquatic species whose core temperature equals the surrounding water temperature, neurons experience rather rapid and wide-ranging temperature fluctuations. Recent work on pattern generating neural circuits in the crustacean stomatogastric nervous system have demonstrated that neuronal circuits can exhibit an intrinsic robustness to temperature fluctuations. However, considering the increased warming of the oceans and recurring heatwaves due to climate change, the question arises whether this intrinsic robustness can acclimate to changing environmental conditions, and whether it differs between species and ocean habitats. METHODS: We address these questions using the pyloric pattern generating circuits in the stomatogastric nervous system of two crab species, Hemigrapsus sanguineus and Carcinus maenas that have seen a worldwide expansion in recent decades. RESULTS AND DISCUSSION: Consistent with their history as invasive species, we find that pyloric activity showed a broad temperature robustness (>30°C). Moreover, the temperature-robust range was dependent on habitat temperature in both species. Warm-acclimating animals shifted the critical temperature at which circuit activity breaks down to higher temperatures. This came at the cost of robustness against cold stimuli in H. sanguineus, but not in C. maenas. Comparing the temperature responses of C. maenas from a cold latitude (the North Sea) to those from a warm latitude (Spain) demonstrated that similar shifts in robustness occurred in natural environments. Our results thus demonstrate that neuronal temperature robustness correlates with, and responds to, environmental temperature conditions, potentially preparing animals for changing ecological conditions and shifting habitats. Frontiers Media S.A. 2023-10-18 /pmc/articles/PMC10619761/ /pubmed/37920203 http://dx.doi.org/10.3389/fncel.2023.1263591 Text en Copyright © 2023 Stein, Torres, Giménez, Espinosa-Novo, Geißel, Vidal-Gadea and Harzsch. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cellular Neuroscience Stein, Wolfgang Torres, Gabriela Giménez, Luis Espinosa-Novo, Noé Geißel, Jan Phillipp Vidal-Gadea, Andrés Harzsch, Steffen Thermal acclimation and habitat-dependent differences in temperature robustness of a crustacean motor circuit |
title | Thermal acclimation and habitat-dependent differences in temperature robustness of a crustacean motor circuit |
title_full | Thermal acclimation and habitat-dependent differences in temperature robustness of a crustacean motor circuit |
title_fullStr | Thermal acclimation and habitat-dependent differences in temperature robustness of a crustacean motor circuit |
title_full_unstemmed | Thermal acclimation and habitat-dependent differences in temperature robustness of a crustacean motor circuit |
title_short | Thermal acclimation and habitat-dependent differences in temperature robustness of a crustacean motor circuit |
title_sort | thermal acclimation and habitat-dependent differences in temperature robustness of a crustacean motor circuit |
topic | Cellular Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619761/ https://www.ncbi.nlm.nih.gov/pubmed/37920203 http://dx.doi.org/10.3389/fncel.2023.1263591 |
work_keys_str_mv | AT steinwolfgang thermalacclimationandhabitatdependentdifferencesintemperaturerobustnessofacrustaceanmotorcircuit AT torresgabriela thermalacclimationandhabitatdependentdifferencesintemperaturerobustnessofacrustaceanmotorcircuit AT gimenezluis thermalacclimationandhabitatdependentdifferencesintemperaturerobustnessofacrustaceanmotorcircuit AT espinosanovonoe thermalacclimationandhabitatdependentdifferencesintemperaturerobustnessofacrustaceanmotorcircuit AT geißeljanphillipp thermalacclimationandhabitatdependentdifferencesintemperaturerobustnessofacrustaceanmotorcircuit AT vidalgadeaandres thermalacclimationandhabitatdependentdifferencesintemperaturerobustnessofacrustaceanmotorcircuit AT harzschsteffen thermalacclimationandhabitatdependentdifferencesintemperaturerobustnessofacrustaceanmotorcircuit |