Cargando…

Analyzing histone ChIP-seq data with a bin-based probability of being signal

Histone ChIP-seq is one of the primary methods for charting the cellular epigenomic landscape, the components of which play a critical regulatory role in gene expression. Analyzing the activity of regulatory elements across datasets and cell types can be challenging due to shifting peak positions an...

Descripción completa

Detalles Bibliográficos
Autores principales: Hecht, Vivian, Dong, Kevin, Rajesh, Sreshtaa, Shpilker, Polina, Wekhande, Siddarth, Shoresh, Noam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619820/
https://www.ncbi.nlm.nih.gov/pubmed/37862349
http://dx.doi.org/10.1371/journal.pcbi.1011568
Descripción
Sumario:Histone ChIP-seq is one of the primary methods for charting the cellular epigenomic landscape, the components of which play a critical regulatory role in gene expression. Analyzing the activity of regulatory elements across datasets and cell types can be challenging due to shifting peak positions and normalization artifacts resulting from, for example, differing read depths, ChIP efficiencies, and target sizes. Moreover, broad regions of enrichment seen in repressive histone marks often evade detection by commonly used peak callers. Here, we present a simple and versatile method for identifying enriched regions in ChIP-seq data that relies on estimating a gamma distribution fit to non-overlapping 5kB genomic bins to establish a global background. We use this distribution to assign a probability of being signal (PBS) between zero and one to each 5 kB bin. This approach, while lower in resolution than typical peak-calling methods, provides a straightforward way to identify enriched regions and compare enrichments among multiple datasets, by transforming the data to values that are universally normalized and can be readily visualized and integrated with downstream analysis methods. We demonstrate applications of PBS for both broad and narrow histone marks, and provide several illustrations of biological insights which can be gleaned by integrating PBS scores with downstream data types.