Cargando…
Is N-Hacking Ever OK? The consequences of collecting more data in pursuit of statistical significance
Upon completion of an experiment, if a trend is observed that is “not quite significant,” it can be tempting to collect more data in an effort to achieve statistical significance. Such sample augmentation or “N-hacking” is condemned because it can lead to an excess of false positives, which can redu...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619921/ https://www.ncbi.nlm.nih.gov/pubmed/37910647 http://dx.doi.org/10.1371/journal.pbio.3002345 |
_version_ | 1785130096722444288 |
---|---|
author | Reinagel, Pamela |
author_facet | Reinagel, Pamela |
author_sort | Reinagel, Pamela |
collection | PubMed |
description | Upon completion of an experiment, if a trend is observed that is “not quite significant,” it can be tempting to collect more data in an effort to achieve statistical significance. Such sample augmentation or “N-hacking” is condemned because it can lead to an excess of false positives, which can reduce the reproducibility of results. However, the scenarios used to prove this rule tend to be unrealistic, assuming the addition of unlimited extra samples to achieve statistical significance, or doing so when results are not even close to significant; an unlikely situation for most experiments involving patient samples, cultured cells, or live animals. If we were to examine some more realistic scenarios, could there be any situations where N-hacking might be an acceptable practice? This Essay aims to address this question, using simulations to demonstrate how N-hacking causes false positives and to investigate whether this increase is still relevant when using parameters based on real-life experimental settings. |
format | Online Article Text |
id | pubmed-10619921 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-106199212023-11-02 Is N-Hacking Ever OK? The consequences of collecting more data in pursuit of statistical significance Reinagel, Pamela PLoS Biol Essay Upon completion of an experiment, if a trend is observed that is “not quite significant,” it can be tempting to collect more data in an effort to achieve statistical significance. Such sample augmentation or “N-hacking” is condemned because it can lead to an excess of false positives, which can reduce the reproducibility of results. However, the scenarios used to prove this rule tend to be unrealistic, assuming the addition of unlimited extra samples to achieve statistical significance, or doing so when results are not even close to significant; an unlikely situation for most experiments involving patient samples, cultured cells, or live animals. If we were to examine some more realistic scenarios, could there be any situations where N-hacking might be an acceptable practice? This Essay aims to address this question, using simulations to demonstrate how N-hacking causes false positives and to investigate whether this increase is still relevant when using parameters based on real-life experimental settings. Public Library of Science 2023-11-01 /pmc/articles/PMC10619921/ /pubmed/37910647 http://dx.doi.org/10.1371/journal.pbio.3002345 Text en © 2023 Pamela Reinagel https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Essay Reinagel, Pamela Is N-Hacking Ever OK? The consequences of collecting more data in pursuit of statistical significance |
title | Is N-Hacking Ever OK? The consequences of collecting more data in pursuit of statistical significance |
title_full | Is N-Hacking Ever OK? The consequences of collecting more data in pursuit of statistical significance |
title_fullStr | Is N-Hacking Ever OK? The consequences of collecting more data in pursuit of statistical significance |
title_full_unstemmed | Is N-Hacking Ever OK? The consequences of collecting more data in pursuit of statistical significance |
title_short | Is N-Hacking Ever OK? The consequences of collecting more data in pursuit of statistical significance |
title_sort | is n-hacking ever ok? the consequences of collecting more data in pursuit of statistical significance |
topic | Essay |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619921/ https://www.ncbi.nlm.nih.gov/pubmed/37910647 http://dx.doi.org/10.1371/journal.pbio.3002345 |
work_keys_str_mv | AT reinagelpamela isnhackingeveroktheconsequencesofcollectingmoredatainpursuitofstatisticalsignificance |