Cargando…
A Movie Recommender System Based on User Profile and Artificial Bee Colony Optimization
In this study, a new algorithm for recommending movies to viewers has been proposed. To do this, the suggested method employs data mining techniques. The proposed method includes three steps for generating recommendations: “preprocessing of user profile information,” “feature extraction,” and “recom...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620022/ https://www.ncbi.nlm.nih.gov/pubmed/37920780 http://dx.doi.org/10.1155/2023/2311817 |
_version_ | 1785130117987565568 |
---|---|
author | Rajabi Kouchi, Faezeh Oftadeh Balani, Sahar Esmaeilpour, Amirhossein Shafieian, Masoume Sirwan, Rzgar Hussein Mohammed, Adil |
author_facet | Rajabi Kouchi, Faezeh Oftadeh Balani, Sahar Esmaeilpour, Amirhossein Shafieian, Masoume Sirwan, Rzgar Hussein Mohammed, Adil |
author_sort | Rajabi Kouchi, Faezeh |
collection | PubMed |
description | In this study, a new algorithm for recommending movies to viewers has been proposed. To do this, the suggested method employs data mining techniques. The proposed method includes three steps for generating recommendations: “preprocessing of user profile information,” “feature extraction,” and “recommendation.” In the first step of proposed method, the user information will be examined and transformed into a form that can be handled in the next phases. In the second step of the proposed method, user attributes are then extracted as a collection of their individual qualities, as well as the average rating of each user for various genres. The bee colony optimization algorithm is then used to select the optimal features. Finally, in the third step of the proposed method, the ratings of similar users are utilized to offer movies to the target user, and the similarities between various users are determined using the characteristics calculated for them, as well as the Euclidean distance criteria. The proposed method was evaluated using the MovieLens database, and its output was assessed in terms of precision and recall criteria; these results show that the proposed method will increase the precision by an average of 1.39% and the recall by 0.8% compared to the compared algorithms. |
format | Online Article Text |
id | pubmed-10620022 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-106200222023-11-02 A Movie Recommender System Based on User Profile and Artificial Bee Colony Optimization Rajabi Kouchi, Faezeh Oftadeh Balani, Sahar Esmaeilpour, Amirhossein Shafieian, Masoume Sirwan, Rzgar Hussein Mohammed, Adil Comput Intell Neurosci Research Article In this study, a new algorithm for recommending movies to viewers has been proposed. To do this, the suggested method employs data mining techniques. The proposed method includes three steps for generating recommendations: “preprocessing of user profile information,” “feature extraction,” and “recommendation.” In the first step of proposed method, the user information will be examined and transformed into a form that can be handled in the next phases. In the second step of the proposed method, user attributes are then extracted as a collection of their individual qualities, as well as the average rating of each user for various genres. The bee colony optimization algorithm is then used to select the optimal features. Finally, in the third step of the proposed method, the ratings of similar users are utilized to offer movies to the target user, and the similarities between various users are determined using the characteristics calculated for them, as well as the Euclidean distance criteria. The proposed method was evaluated using the MovieLens database, and its output was assessed in terms of precision and recall criteria; these results show that the proposed method will increase the precision by an average of 1.39% and the recall by 0.8% compared to the compared algorithms. Hindawi 2023-10-25 /pmc/articles/PMC10620022/ /pubmed/37920780 http://dx.doi.org/10.1155/2023/2311817 Text en Copyright © 2023 Faezeh Rajabi Kouchi et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Rajabi Kouchi, Faezeh Oftadeh Balani, Sahar Esmaeilpour, Amirhossein Shafieian, Masoume Sirwan, Rzgar Hussein Mohammed, Adil A Movie Recommender System Based on User Profile and Artificial Bee Colony Optimization |
title | A Movie Recommender System Based on User Profile and Artificial Bee Colony Optimization |
title_full | A Movie Recommender System Based on User Profile and Artificial Bee Colony Optimization |
title_fullStr | A Movie Recommender System Based on User Profile and Artificial Bee Colony Optimization |
title_full_unstemmed | A Movie Recommender System Based on User Profile and Artificial Bee Colony Optimization |
title_short | A Movie Recommender System Based on User Profile and Artificial Bee Colony Optimization |
title_sort | movie recommender system based on user profile and artificial bee colony optimization |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620022/ https://www.ncbi.nlm.nih.gov/pubmed/37920780 http://dx.doi.org/10.1155/2023/2311817 |
work_keys_str_mv | AT rajabikouchifaezeh amovierecommendersystembasedonuserprofileandartificialbeecolonyoptimization AT oftadehbalanisahar amovierecommendersystembasedonuserprofileandartificialbeecolonyoptimization AT esmaeilpouramirhossein amovierecommendersystembasedonuserprofileandartificialbeecolonyoptimization AT shafieianmasoume amovierecommendersystembasedonuserprofileandartificialbeecolonyoptimization AT sirwanrzgar amovierecommendersystembasedonuserprofileandartificialbeecolonyoptimization AT husseinmohammedadil amovierecommendersystembasedonuserprofileandartificialbeecolonyoptimization AT rajabikouchifaezeh movierecommendersystembasedonuserprofileandartificialbeecolonyoptimization AT oftadehbalanisahar movierecommendersystembasedonuserprofileandartificialbeecolonyoptimization AT esmaeilpouramirhossein movierecommendersystembasedonuserprofileandartificialbeecolonyoptimization AT shafieianmasoume movierecommendersystembasedonuserprofileandartificialbeecolonyoptimization AT sirwanrzgar movierecommendersystembasedonuserprofileandartificialbeecolonyoptimization AT husseinmohammedadil movierecommendersystembasedonuserprofileandartificialbeecolonyoptimization |