Cargando…
The combination of Hebbian and predictive plasticity learns invariant object representations in deep sensory networks
Recognition of objects from sensory stimuli is essential for survival. To that end, sensory networks in the brain must form object representations invariant to stimulus changes, such as size, orientation and context. Although Hebbian plasticity is known to shape sensory networks, it fails to create...
Autores principales: | Halvagal, Manu Srinath, Zenke, Friedemann |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620089/ https://www.ncbi.nlm.nih.gov/pubmed/37828226 http://dx.doi.org/10.1038/s41593-023-01460-y |
Ejemplares similares
-
Hebbian plasticity requires compensatory processes on multiple timescales
por: Zenke, Friedemann, et al.
Publicado: (2017) -
Learning to Generate Sequences with Combination of Hebbian and Non-hebbian Plasticity in Recurrent Spiking Neural Networks
por: Panda, Priyadarshini, et al.
Publicado: (2017) -
Multimodal Representation Learning for Place Recognition Using Deep Hebbian Predictive Coding
por: Pearson, Martin J., et al.
Publicado: (2021) -
Anti-Hebbian Spike-Timing-Dependent Plasticity and Adaptive Sensory Processing
por: Roberts, Patrick D., et al.
Publicado: (2010) -
Analysis of Synaptic Scaling in Combination with Hebbian Plasticity in Several Simple Networks
por: Tetzlaff, Christian, et al.
Publicado: (2012)