Cargando…
Aiding food security and sustainability efforts through graph neural network-based consumer food ingredient detection and substitution
Understanding precisely what is in food products is not always straightforward due to food fraud, differing labelling regulations, naming inconsistencies and the hierarchical nature of ingredients. Despite this, the need to detect and substitute ingredients in consumer food products is far-reaching....
Autores principales: | Foster, Jack, Brintrup, Alexandra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620152/ https://www.ncbi.nlm.nih.gov/pubmed/37914744 http://dx.doi.org/10.1038/s41598-023-44859-0 |
Ejemplares similares
-
Identifying Ingredient Substitutions Using a Knowledge Graph of Food
por: Shirai, Sola S., et al.
Publicado: (2021) -
Natural Sweeteners: The Relevance of Food Naturalness for Consumers, Food Security Aspects, Sustainability and Health Impacts
por: Saraiva, Ariana, et al.
Publicado: (2020) -
Sustainable Nutrition for Increased Food Security Related to Romanian Consumers’ Behavior
por: Balan, Ioana Mihaela, et al.
Publicado: (2022) -
Food Byproducts as Sustainable Ingredients for Innovative and Healthy Dairy Foods
por: Iriondo-DeHond, Maite, et al.
Publicado: (2018) -
An overview of microalgae biomass as a sustainable aquaculture feed ingredient: food security and circular economy
por: Ahmad, Ashfaq, et al.
Publicado: (2022)