Cargando…
Dual adversarial deconfounding autoencoder for joint batch-effects removal from multi-center and multi-scanner radiomics data
Medical imaging represents the primary tool for investigating and monitoring several diseases, including cancer. The advances in quantitative image analysis have developed towards the extraction of biomarkers able to support clinical decisions. To produce robust results, multi-center studies are oft...
Autores principales: | Cavinato, Lara, Massi, Michela Carlotta, Sollini, Martina, Kirienko, Margarita, Ieva, Francesca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620174/ https://www.ncbi.nlm.nih.gov/pubmed/37914758 http://dx.doi.org/10.1038/s41598-023-45983-7 |
Ejemplares similares
-
Adversarial Autoencoder and Multi-Task Semi-Supervised Learning for Multi-stage Process
por: Mendes, Andre, et al.
Publicado: (2020) -
Methodological framework for radiomics applications in Hodgkin’s lymphoma
por: Sollini, Martina, et al.
Publicado: (2020) -
Deconfounded Dimension Reduction via Partial Embeddings
por: Chen, Andrew A., et al.
Publicado: (2023) -
Regularized adversarial learning for normalization of multi-batch untargeted metabolomics data
por: Dmitrenko, Andrei, et al.
Publicado: (2023) -
Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics
por: Sollini, Martina, et al.
Publicado: (2019)