Cargando…
Attributed network embedding based on self-attention mechanism for recommendation method
Network embedding is a technique used to learn a low-dimensional vector representation for each node in a network. This method has been proven effective in network mining tasks, especially in the area of recommendation systems. The real-world scenarios often contain rich attribute information that c...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620426/ https://www.ncbi.nlm.nih.gov/pubmed/37914732 http://dx.doi.org/10.1038/s41598-023-44696-1 |
Sumario: | Network embedding is a technique used to learn a low-dimensional vector representation for each node in a network. This method has been proven effective in network mining tasks, especially in the area of recommendation systems. The real-world scenarios often contain rich attribute information that can be leveraged to enhance the performance of representation learning methods. Therefore, this article proposes an attribute network embedding recommendation method based on self-attention mechanism (AESR) that caters to the recommendation needs of users with little or no explicit feedback data. The proposed AESR method first models the attribute combination representation of items and then uses a self-attention mechanism to compactly embed the combination representation. By representing users as different anchor vectors, the method can efficiently learn their preferences and reconstruct them with few learning samples. This achieves accurate and fast recommendations and avoids data sparsity problems. Experimental results show that AESR can provide personalized recommendations even for users with little explicit feedback information. Moreover, the attribute extraction of documents can effectively improve recommendation accuracy on different datasets. Overall, the proposed AESR method provides a promising approach to recommendation systems that can leverage attribute information for better performance. |
---|