Cargando…

Ontogeny of color development in two green–brown polymorphic grasshopper species

Many insects, including several orthopterans, undergo dramatic changes in body coloration during ontogeny. This variation is particularly intriguing in gomphocerine grasshoppers, where the green and brown morphs appear to be genetically determined (Schielzeth & Dieker, 2020, BMC Evolutionary Bio...

Descripción completa

Detalles Bibliográficos
Autores principales: Varma, Mahendra, Winter, Gabe, Rowland, Hannah M., Schielzeth, Holger
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620580/
https://www.ncbi.nlm.nih.gov/pubmed/37928193
http://dx.doi.org/10.1002/ece3.10712
Descripción
Sumario:Many insects, including several orthopterans, undergo dramatic changes in body coloration during ontogeny. This variation is particularly intriguing in gomphocerine grasshoppers, where the green and brown morphs appear to be genetically determined (Schielzeth & Dieker, 2020, BMC Evolutionary Biology, 20, 63; Winter et al., 2021, Heredity, 127, 66). A better understanding of how these color morphs develop during ontogeny can provide valuable insights into the evolution and ecology of such a widespread color polymorphism. Here, we focus on the color development of two green–brown polymorphic species, the club‐legged grasshopper Gomphocerus sibiricus and the steppe grasshopper Chorthippus dorsatus. By following the color development of individuals from hatching to adulthood, we found that color morph differences begin to develop during the second nymphal stage, are clearly defined by the third nymphal stage, and remain stable throughout the life of an individual. Interestingly, we also observed that shed skins of late nymphal stages are identifiable by color morphs based on their yellowish coloration, rather than the green that marks green body parts. Furthermore, by assessing how these colors are perceived by different visual systems, we found that certain potential predators can chromatically discriminate between morphs, while others may not. These results suggest that the putative genes controlling color morph are active during the early stages of ontogeny, and that green color is likely composed of two components, one present in the cuticle and one not. In addition, the effectiveness of camouflage appears to vary depending on the specific predator involved.