Cargando…
Comparative analysis of group information-guided independent component analysis and independent vector analysis for assessing brain functional network characteristics in autism spectrum disorder
INTRODUCTION: Group information-guided independent component analysis (GIG-ICA) and independent vector analysis (IVA) are two methods that improve estimation of subject-specific independent components in neuroimaging studies. These methods have shown better performance than traditional group indepen...
Autores principales: | Jing, Junlin, Klugah-Brown, Benjamin, Xia, Shiyu, Sheng, Min, Biswal, Bharat B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620743/ https://www.ncbi.nlm.nih.gov/pubmed/37928736 http://dx.doi.org/10.3389/fnins.2023.1252732 |
Ejemplares similares
-
Functional connectivity during cognitive control in children with autism spectrum disorder: an independent component analysis
por: Ambrosino, S., et al.
Publicado: (2014) -
Group independent component analysis of MR spectra
por: Kalyanam, Ravi, et al.
Publicado: (2013) -
Fully exploratory network independent component analysis of the 1000 functional connectomes database
por: Kalcher, Klaudius, et al.
Publicado: (2012) -
Structural differences among children, adolescents, and adults with attention-deficit/hyperactivity disorder and abnormal Granger causality of the right pallidum and whole-brain
por: Agoalikum, Elijah, et al.
Publicado: (2023) -
Independent component analysis of edge information for face recognition
por: Karande, Kailash Jagannath, et al.
Publicado: (2013)