Cargando…
Feasibility of the Optimal Design of AI-Based Models Integrated with Ensemble Machine Learning Paradigms for Modeling the Yields of Light Olefins in Crude-to-Chemical Conversions
[Image: see text] The prediction of the yields of light olefins in the direct conversion of crude oil to chemicals requires the development of a robust model that represents the crude-to-chemical conversion processes. This study utilizes artificial intelligence (AI) and machine learning algorithms t...
Autores principales: | Usman, A. G., Tanimu, Abdulkadir, Abba, S. I., Isik, Selin, Aitani, Abdullah, Alasiri, Hassan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620777/ https://www.ncbi.nlm.nih.gov/pubmed/37929092 http://dx.doi.org/10.1021/acsomega.3c05227 |
Ejemplares similares
-
Enhanced light olefins production via n-pentane cracking using modified MFI catalysts
por: Qureshi, Ziyauddin S., et al.
Publicado: (2022) -
Artificial intelligence–based models for the qualitative and quantitative prediction of a phytochemical compound using HPLC method
por: USMAN, Abdullahi Garba, et al.
Publicado: (2020) -
An AI-Application-Oriented In-Class Teaching Evaluation Model by Using Statistical Modeling and Ensemble Learning †
por: Guo, Junqi, et al.
Publicado: (2021) -
DMEformer: A newly designed dynamic model ensemble transformer for crude oil futures prediction
por: Liu, Chao, et al.
Publicado: (2023) -
Editorial: Conversational AI
por: Raaijmakers, Stephan, et al.
Publicado: (2023)