Cargando…
Nature-Based Solution to Eliminate Cyanotoxins in Water Using Biologically Enhanced Biochar
[Image: see text] Climate change and high eutrophication levels of freshwater sources are increasing the occurrence and intensity of toxic cyanobacterial blooms in drinking water supplies. Conventional water treatment struggles to eliminate cyanobacteria/cyanotoxins, and expensive tertiary treatment...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620996/ https://www.ncbi.nlm.nih.gov/pubmed/37856890 http://dx.doi.org/10.1021/acs.est.3c05298 |
Sumario: | [Image: see text] Climate change and high eutrophication levels of freshwater sources are increasing the occurrence and intensity of toxic cyanobacterial blooms in drinking water supplies. Conventional water treatment struggles to eliminate cyanobacteria/cyanotoxins, and expensive tertiary treatments are needed. To address this, we have designed a sustainable, nature-based solution using biochar derived from waste coconut shells. This biochar provides a low-cost porous support for immobilizing microbial communities, forming biologically enhanced biochar (BEB). Highly toxic microcystin-LR (MC-LR) was used to influence microbial colonization of the biochar by the natural lake-water microbiome. Over 11 months, BEBs were exposed to microcystins, cyanobacterial extracts, and live cyanobacterial cells, always resulting in rapid elimination of toxins and even a 1.6–1.9 log reduction in cyanobacterial cell numbers. After 48 h of incubation with our BEBs, the MC-LR concentrations dropped below the detection limit of 0.1 ng/mL. The accelerated degradation of cyanotoxins was attributed to enhanced species diversity and microcystin-degrading microbes colonizing the biochar. To ensure scalability, we evaluated BEBs produced through batch-scale and continuous-scale pyrolysis, while also guaranteeing safety by maintaining toxic impurities in biochar within acceptable limits and monitoring degradation byproducts. This study serves as a proof-of-concept for a sustainable, scalable, and safe nature-based solution for combating toxic algal blooms. |
---|