Cargando…

Multiphysics Modeling of Plasmon-Enhanced All-Optical Helicity-Dependent Switching

[Image: see text] In this work, we propose a multiphysics approach to simulate all-optical helicity-dependent switching induced by the local hot spots of plasmonic nanostructures. Due to the plasmonic resonance of an array of gold nanodisks, strong electromagnetic fields are generated within the mag...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Feng, Wang, Chuangtang, Xu, Yihao, Ma, Wei, Liu, Yongmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621044/
https://www.ncbi.nlm.nih.gov/pubmed/37928963
http://dx.doi.org/10.1021/acsphotonics.2c01815
Descripción
Sumario:[Image: see text] In this work, we propose a multiphysics approach to simulate all-optical helicity-dependent switching induced by the local hot spots of plasmonic nanostructures. Due to the plasmonic resonance of an array of gold nanodisks, strong electromagnetic fields are generated within the magnetic recording media underneath the gold nanodisks. We construct a multiphysics framework considering the opto-magnetic and opto-thermal effects, and then model the magnetization switching using the Monte Carlo method. Our approach bridges the gap between plasmonic nanostructure design and magnetization switching modeling, allowing for the simulation of helicity-dependent, nanoscale magnetization switching in the presence of localized surface plasmons.