Cargando…
Deep learning algorithm performance in contouring head and neck organs at risk: a systematic review and single-arm meta-analysis
PURPOSE: The contouring of organs at risk (OARs) in head and neck cancer radiation treatment planning is a crucial, yet repetitive and time-consuming process. Recent studies have applied deep learning (DL) algorithms to automatically contour head and neck OARs. This study aims to conduct a systemati...
Autores principales: | Liu, Peiru, Sun, Ying, Zhao, Xinzhuo, Yan, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621161/ https://www.ncbi.nlm.nih.gov/pubmed/37915046 http://dx.doi.org/10.1186/s12938-023-01159-y |
Ejemplares similares
-
External validation of deep learning-based contouring of head and neck organs at risk
por: Brunenberg, Ellen J.L., et al.
Publicado: (2020) -
Assessment of manual adjustment performed in clinical practice following deep learning contouring for head and neck organs at risk in radiotherapy
por: Brouwer, Charlotte L., et al.
Publicado: (2020) -
Deep Learning Architecture to Improve Edge Accuracy of Auto-Contouring for Head and Neck Radiotherapy
por: Gifford, Ryan, et al.
Publicado: (2023) -
Deep learning tools for the cancer clinic: an open-source framework with head and neck contour validation
por: Asbach, John C., et al.
Publicado: (2022) -
Feasibility evaluation of novel AI‐based deep‐learning contouring algorithm for radiotherapy
por: Maduro Bustos, Luis A., et al.
Publicado: (2023)