Cargando…
Anatomical categorization of isolated non-focal dystonia: novel and existing patterns using a data-driven approach
According to expert consensus, dystonia can be classified as focal, segmental, multifocal, and generalized, based on the affected body distribution. To provide an empirical and data-driven approach to categorizing these distributions, we used a data-driven clustering approach to compare frequency an...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621194/ https://www.ncbi.nlm.nih.gov/pubmed/37920445 http://dx.doi.org/10.3389/dyst.2023.11305 |
_version_ | 1785130364561260544 |
---|---|
author | Younce, J. R. Cascella, R. H. Berman, B. D. Jinnah, H. A. Bellows, S Feuerstein, J. Wagle Shukla, A. Mahajan, A. Chang, F. C. F. Duque, K. R. Reich, S. Richardson, S. Pirio Deik, A. Stover, N. Luna, J. M. Norris, S. A. |
author_facet | Younce, J. R. Cascella, R. H. Berman, B. D. Jinnah, H. A. Bellows, S Feuerstein, J. Wagle Shukla, A. Mahajan, A. Chang, F. C. F. Duque, K. R. Reich, S. Richardson, S. Pirio Deik, A. Stover, N. Luna, J. M. Norris, S. A. |
author_sort | Younce, J. R. |
collection | PubMed |
description | According to expert consensus, dystonia can be classified as focal, segmental, multifocal, and generalized, based on the affected body distribution. To provide an empirical and data-driven approach to categorizing these distributions, we used a data-driven clustering approach to compare frequency and co-occurrence rates of non-focal dystonia in pre-defined body regions using the Dystonia Coalition (DC) dataset. We analyzed 1,618 participants with isolated non-focal dystonia from the DC database. The analytic approach included construction of frequency tables, variable-wise analysis using hierarchical clustering and independent component analysis (ICA), and case-wise consensus hierarchical clustering to describe associations and clusters for dystonia affecting any combination of eighteen pre-defined body regions. Variable-wise hierarchical clustering demonstrated closest relationships between bilateral upper legs (distance = 0.40), upper and lower face (distance = 0.45), bilateral hands (distance = 0.53), and bilateral feet (distance = 0.53). ICA demonstrated clear grouping for the a) bilateral hands, b) neck, and c) upper and lower face. Case-wise consensus hierarchical clustering at k = 9 identified 3 major clusters. Major clusters consisted primarily of a) cervical dystonia with nearby regions, b) bilateral hand dystonia, and c) cranial dystonia. Our data-driven approach in a large dataset of isolated non-focal dystonia reinforces common segmental patterns in cranial and cervical regions. We observed unexpectedly strong associations between bilateral upper or lower limbs, which suggests that symmetric multifocal patterns may represent a previously underrecognized dystonia subtype. |
format | Online Article Text |
id | pubmed-10621194 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
record_format | MEDLINE/PubMed |
spelling | pubmed-106211942023-11-02 Anatomical categorization of isolated non-focal dystonia: novel and existing patterns using a data-driven approach Younce, J. R. Cascella, R. H. Berman, B. D. Jinnah, H. A. Bellows, S Feuerstein, J. Wagle Shukla, A. Mahajan, A. Chang, F. C. F. Duque, K. R. Reich, S. Richardson, S. Pirio Deik, A. Stover, N. Luna, J. M. Norris, S. A. Dystonia Article According to expert consensus, dystonia can be classified as focal, segmental, multifocal, and generalized, based on the affected body distribution. To provide an empirical and data-driven approach to categorizing these distributions, we used a data-driven clustering approach to compare frequency and co-occurrence rates of non-focal dystonia in pre-defined body regions using the Dystonia Coalition (DC) dataset. We analyzed 1,618 participants with isolated non-focal dystonia from the DC database. The analytic approach included construction of frequency tables, variable-wise analysis using hierarchical clustering and independent component analysis (ICA), and case-wise consensus hierarchical clustering to describe associations and clusters for dystonia affecting any combination of eighteen pre-defined body regions. Variable-wise hierarchical clustering demonstrated closest relationships between bilateral upper legs (distance = 0.40), upper and lower face (distance = 0.45), bilateral hands (distance = 0.53), and bilateral feet (distance = 0.53). ICA demonstrated clear grouping for the a) bilateral hands, b) neck, and c) upper and lower face. Case-wise consensus hierarchical clustering at k = 9 identified 3 major clusters. Major clusters consisted primarily of a) cervical dystonia with nearby regions, b) bilateral hand dystonia, and c) cranial dystonia. Our data-driven approach in a large dataset of isolated non-focal dystonia reinforces common segmental patterns in cranial and cervical regions. We observed unexpectedly strong associations between bilateral upper or lower limbs, which suggests that symmetric multifocal patterns may represent a previously underrecognized dystonia subtype. 2023 2023-06-08 /pmc/articles/PMC10621194/ /pubmed/37920445 http://dx.doi.org/10.3389/dyst.2023.11305 Text en https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (https://creativecommons.org/licenses/by/4.0/) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Article Younce, J. R. Cascella, R. H. Berman, B. D. Jinnah, H. A. Bellows, S Feuerstein, J. Wagle Shukla, A. Mahajan, A. Chang, F. C. F. Duque, K. R. Reich, S. Richardson, S. Pirio Deik, A. Stover, N. Luna, J. M. Norris, S. A. Anatomical categorization of isolated non-focal dystonia: novel and existing patterns using a data-driven approach |
title | Anatomical categorization of isolated non-focal dystonia: novel and existing patterns using a data-driven approach |
title_full | Anatomical categorization of isolated non-focal dystonia: novel and existing patterns using a data-driven approach |
title_fullStr | Anatomical categorization of isolated non-focal dystonia: novel and existing patterns using a data-driven approach |
title_full_unstemmed | Anatomical categorization of isolated non-focal dystonia: novel and existing patterns using a data-driven approach |
title_short | Anatomical categorization of isolated non-focal dystonia: novel and existing patterns using a data-driven approach |
title_sort | anatomical categorization of isolated non-focal dystonia: novel and existing patterns using a data-driven approach |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621194/ https://www.ncbi.nlm.nih.gov/pubmed/37920445 http://dx.doi.org/10.3389/dyst.2023.11305 |
work_keys_str_mv | AT youncejr anatomicalcategorizationofisolatednonfocaldystonianovelandexistingpatternsusingadatadrivenapproach AT cascellarh anatomicalcategorizationofisolatednonfocaldystonianovelandexistingpatternsusingadatadrivenapproach AT bermanbd anatomicalcategorizationofisolatednonfocaldystonianovelandexistingpatternsusingadatadrivenapproach AT jinnahha anatomicalcategorizationofisolatednonfocaldystonianovelandexistingpatternsusingadatadrivenapproach AT bellowss anatomicalcategorizationofisolatednonfocaldystonianovelandexistingpatternsusingadatadrivenapproach AT feuersteinj anatomicalcategorizationofisolatednonfocaldystonianovelandexistingpatternsusingadatadrivenapproach AT wagleshuklaa anatomicalcategorizationofisolatednonfocaldystonianovelandexistingpatternsusingadatadrivenapproach AT mahajana anatomicalcategorizationofisolatednonfocaldystonianovelandexistingpatternsusingadatadrivenapproach AT changfcf anatomicalcategorizationofisolatednonfocaldystonianovelandexistingpatternsusingadatadrivenapproach AT duquekr anatomicalcategorizationofisolatednonfocaldystonianovelandexistingpatternsusingadatadrivenapproach AT reichs anatomicalcategorizationofisolatednonfocaldystonianovelandexistingpatternsusingadatadrivenapproach AT richardsonspirio anatomicalcategorizationofisolatednonfocaldystonianovelandexistingpatternsusingadatadrivenapproach AT deika anatomicalcategorizationofisolatednonfocaldystonianovelandexistingpatternsusingadatadrivenapproach AT stovern anatomicalcategorizationofisolatednonfocaldystonianovelandexistingpatternsusingadatadrivenapproach AT lunajm anatomicalcategorizationofisolatednonfocaldystonianovelandexistingpatternsusingadatadrivenapproach AT norrissa anatomicalcategorizationofisolatednonfocaldystonianovelandexistingpatternsusingadatadrivenapproach |