Cargando…
Evaluation of Risk Prediction with Hierarchical Data: Dependency Adjusted Confidence Intervals for the AUC
The area under the true ROC curve (AUC) is routinely used to determine how strongly a given model discriminates between the levels of a binary outcome. Standard inference with the AUC requires that outcomes be independent of each other. To overcome this limitation, a method was developed for the est...
Autores principales: | Bay, Camden, Glynn, Robert J, Seddon, Johanna M, Lee, Mei-Ling Ting, Rosner, Bernard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621602/ https://www.ncbi.nlm.nih.gov/pubmed/37920864 http://dx.doi.org/10.3390/stats6020034 |
Ejemplares similares
-
Correcting AUC for Measurement Error
por: Rosner, Bernard, et al.
Publicado: (2015) -
A Modified AUC for Training Convolutional Neural Networks: Taking Confidence Into Account
por: Namdar, Khashayar, et al.
Publicado: (2021) -
AucPR: An AUC-based approach using penalized regression for disease prediction with
high-dimensional omics data
por: Yu, Wenbao, et al.
Publicado: (2014) -
HOW CONFIDENT IS THE CONFIDENCE INTERVAL
por: Egbuchulem, K.I.
Publicado: (2022) -
Exploration of Analysis Methods for Diagnostic Imaging Tests: Problems with ROC AUC and Confidence Scores in CT Colonography
por: Mallett, Susan, et al.
Publicado: (2014)