Cargando…
Correction: Expert-augmented automated machine learning optimizes hemodynamic predictors of spinal cord injury outcome
Autores principales: | Chou, Austin, Torres-Espin, Abel, Kyritsis, Nikos, Huie, J. Russell, Khatry, Sarah, Funk, Jeremy, Hay, Jennifer, Lofgreen, Andrew, Shah, Rajiv, McCann, Chandler, Pascual, Lisa U., Amorim, Edilberto, Weinstein, Philip R., Manley, Geoffrey T., Dhall, Sanjay S., Pan, Jonathan Z., Bresnahan, Jacqueline C., Beattie, Michael S., Whetstone, William D., Ferguson, Adam R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621810/ https://www.ncbi.nlm.nih.gov/pubmed/37917637 http://dx.doi.org/10.1371/journal.pone.0294081 |
Ejemplares similares
-
Expert-augmented automated machine learning optimizes hemodynamic predictors of spinal cord injury outcome
por: Chou, Austin, et al.
Publicado: (2022) -
Diagnostic blood RNA profiles for human acute spinal cord injury
por: Kyritsis, Nikos, et al.
Publicado: (2021) -
Topological network analysis of patient similarity for precision management of acute blood pressure in spinal cord injury
por: Torres-Espín, Abel, et al.
Publicado: (2021) -
Reproducible analysis of disease space via principal components using the novel R package syndRomics
por: Torres-Espín, Abel, et al.
Publicado: (2021) -
Excavating FAIR Data: the Case of the Multicenter Animal Spinal Cord Injury Study (MASCIS), Blood Pressure, and Neuro-Recovery
por: Almeida, Carlos A., et al.
Publicado: (2021)