Cargando…
A hybrid machine learning feature selection model—HMLFSM to enhance gene classification applied to multiple colon cancers dataset
Colon cancer is a significant global health problem, and early detection is critical for improving survival rates. Traditional detection methods, such as colonoscopies, can be invasive and uncomfortable for patients. Machine Learning (ML) algorithms have emerged as a promising approach for non-invas...
Autores principales: | Al-Rajab, Murad, Lu, Joan, Xu, Qiang, Kentour, Mohamed, Sawsa, Ahlam, Shuweikeh, Emad, Joy, Mike, Arasaradnam, Ramesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621932/ https://www.ncbi.nlm.nih.gov/pubmed/37917732 http://dx.doi.org/10.1371/journal.pone.0286791 |
Ejemplares similares
-
A framework model using multifilter feature selection to enhance
colon cancer classification
por: Al-Rajab, Murad, et al.
Publicado: (2021) -
An investigation into the deep learning approach in sentimental analysis using graph-based theories
por: Kentour, Mohamed, et al.
Publicado: (2021) -
Predicting new crescent moon visibility applying machine learning algorithms
por: Al-Rajab, Murad, et al.
Publicado: (2023) -
MYOD-1 in normal colonic mucosa – role as a putative biomarker?
por: Arasaradnam, Ramesh P, et al.
Publicado: (2012) -
Clinical utility of colon capsule endoscopy: a moving target?
por: Jalayeri Nia, Gohar, et al.
Publicado: (2023)