Cargando…
Response retention and apparent motion effect in visual cortex models
Apparent motion is a visual illusion in which stationary stimuli, flashing in distinct spatial locations at certain time intervals, are perceived as one stimulus moving between these locations. In the primary visual cortex, apparent-motion stimuli produce smooth spatio-temporal patterns of activity...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621977/ https://www.ncbi.nlm.nih.gov/pubmed/37917779 http://dx.doi.org/10.1371/journal.pone.0293725 |
_version_ | 1785130469940002816 |
---|---|
author | Tiselko, Vasilii S. Volgushev, Maxim Jancke, Dirk Chizhov, Anton V. |
author_facet | Tiselko, Vasilii S. Volgushev, Maxim Jancke, Dirk Chizhov, Anton V. |
author_sort | Tiselko, Vasilii S. |
collection | PubMed |
description | Apparent motion is a visual illusion in which stationary stimuli, flashing in distinct spatial locations at certain time intervals, are perceived as one stimulus moving between these locations. In the primary visual cortex, apparent-motion stimuli produce smooth spatio-temporal patterns of activity similar to those produced by continuously moving stimuli. An important prerequisite for producing such activity patterns is prolongation of responses to brief stimuli. Indeed, a brief stimulus can evoke in the visual cortex a long response, outlasting the stimulus by hundreds of milliseconds. Here we use firing-rate based models with simple ring structure, and biologically-detailed conductance-based refractory density (CBRD) model with retinotopic space representation to analyze the response retention and the origin of smooth profiles of activity in response to apparent-motion stimuli. We show that the strength of recurrent connectivity is the major factor that endorses neuronal networks with the ability for response retention. The same strengths of recurrent connections mediate the appearance of bump attractor in the ring models. Factors such as synaptic depression, NMDA receptor mediated currents, and conductances regulating spike adaptation influence response retention, but cannot substitute for the weakness of recurrent connections to reproduce response retention in models with weak connectivity. However, the weakness of lateral recurrent connections can be compensated by layering: in multi-layer models even with weaker connections the activity retains due to its feedforward propagation from layer to layer. Using CBRD model with retinotopic space representation we further show that smooth spatio-temporal profiles of activity in response to apparent-motion stimuli are produced in the models expressing response retention, but not in the models that fail to produce response retention. Together, these results demonstrate a link between response retention and the ability of neuronal networks to generate spatio-temporal patterns of activity, which are compatible with perception of apparent motion. |
format | Online Article Text |
id | pubmed-10621977 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-106219772023-11-03 Response retention and apparent motion effect in visual cortex models Tiselko, Vasilii S. Volgushev, Maxim Jancke, Dirk Chizhov, Anton V. PLoS One Research Article Apparent motion is a visual illusion in which stationary stimuli, flashing in distinct spatial locations at certain time intervals, are perceived as one stimulus moving between these locations. In the primary visual cortex, apparent-motion stimuli produce smooth spatio-temporal patterns of activity similar to those produced by continuously moving stimuli. An important prerequisite for producing such activity patterns is prolongation of responses to brief stimuli. Indeed, a brief stimulus can evoke in the visual cortex a long response, outlasting the stimulus by hundreds of milliseconds. Here we use firing-rate based models with simple ring structure, and biologically-detailed conductance-based refractory density (CBRD) model with retinotopic space representation to analyze the response retention and the origin of smooth profiles of activity in response to apparent-motion stimuli. We show that the strength of recurrent connectivity is the major factor that endorses neuronal networks with the ability for response retention. The same strengths of recurrent connections mediate the appearance of bump attractor in the ring models. Factors such as synaptic depression, NMDA receptor mediated currents, and conductances regulating spike adaptation influence response retention, but cannot substitute for the weakness of recurrent connections to reproduce response retention in models with weak connectivity. However, the weakness of lateral recurrent connections can be compensated by layering: in multi-layer models even with weaker connections the activity retains due to its feedforward propagation from layer to layer. Using CBRD model with retinotopic space representation we further show that smooth spatio-temporal profiles of activity in response to apparent-motion stimuli are produced in the models expressing response retention, but not in the models that fail to produce response retention. Together, these results demonstrate a link between response retention and the ability of neuronal networks to generate spatio-temporal patterns of activity, which are compatible with perception of apparent motion. Public Library of Science 2023-11-02 /pmc/articles/PMC10621977/ /pubmed/37917779 http://dx.doi.org/10.1371/journal.pone.0293725 Text en © 2023 Tiselko et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Tiselko, Vasilii S. Volgushev, Maxim Jancke, Dirk Chizhov, Anton V. Response retention and apparent motion effect in visual cortex models |
title | Response retention and apparent motion effect in visual cortex models |
title_full | Response retention and apparent motion effect in visual cortex models |
title_fullStr | Response retention and apparent motion effect in visual cortex models |
title_full_unstemmed | Response retention and apparent motion effect in visual cortex models |
title_short | Response retention and apparent motion effect in visual cortex models |
title_sort | response retention and apparent motion effect in visual cortex models |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621977/ https://www.ncbi.nlm.nih.gov/pubmed/37917779 http://dx.doi.org/10.1371/journal.pone.0293725 |
work_keys_str_mv | AT tiselkovasiliis responseretentionandapparentmotioneffectinvisualcortexmodels AT volgushevmaxim responseretentionandapparentmotioneffectinvisualcortexmodels AT janckedirk responseretentionandapparentmotioneffectinvisualcortexmodels AT chizhovantonv responseretentionandapparentmotioneffectinvisualcortexmodels |