Cargando…

Segmentation of glioblastomas in early post-operative multi-modal MRI with deep neural networks

Extent of resection after surgery is one of the main prognostic factors for patients diagnosed with glioblastoma. To achieve this, accurate segmentation and classification of residual tumor from post-operative MR images is essential. The current standard method for estimating it is subject to high i...

Descripción completa

Detalles Bibliográficos
Autores principales: Helland, Ragnhild Holden, Ferles, Alexandros, Pedersen, André, Kommers, Ivar, Ardon, Hilko, Barkhof, Frederik, Bello, Lorenzo, Berger, Mitchel S., Dunås, Tora, Nibali, Marco Conti, Furtner, Julia, Hervey-Jumper, Shawn, Idema, Albert J. S., Kiesel, Barbara, Tewari, Rishi Nandoe, Mandonnet, Emmanuel, Müller, Domenique M. J., Robe, Pierre A., Rossi, Marco, Sagberg, Lisa M., Sciortino, Tommaso, Aalders, Tom, Wagemakers, Michiel, Widhalm, Georg, Witte, Marnix G., Zwinderman, Aeilko H., Majewska, Paulina L., Jakola, Asgeir S., Solheim, Ole, Hamer, Philip C. De Witt, Reinertsen, Ingerid, Eijgelaar, Roelant S., Bouget, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622432/
https://www.ncbi.nlm.nih.gov/pubmed/37919325
http://dx.doi.org/10.1038/s41598-023-45456-x
_version_ 1785130536687108096
author Helland, Ragnhild Holden
Ferles, Alexandros
Pedersen, André
Kommers, Ivar
Ardon, Hilko
Barkhof, Frederik
Bello, Lorenzo
Berger, Mitchel S.
Dunås, Tora
Nibali, Marco Conti
Furtner, Julia
Hervey-Jumper, Shawn
Idema, Albert J. S.
Kiesel, Barbara
Tewari, Rishi Nandoe
Mandonnet, Emmanuel
Müller, Domenique M. J.
Robe, Pierre A.
Rossi, Marco
Sagberg, Lisa M.
Sciortino, Tommaso
Aalders, Tom
Wagemakers, Michiel
Widhalm, Georg
Witte, Marnix G.
Zwinderman, Aeilko H.
Majewska, Paulina L.
Jakola, Asgeir S.
Solheim, Ole
Hamer, Philip C. De Witt
Reinertsen, Ingerid
Eijgelaar, Roelant S.
Bouget, David
author_facet Helland, Ragnhild Holden
Ferles, Alexandros
Pedersen, André
Kommers, Ivar
Ardon, Hilko
Barkhof, Frederik
Bello, Lorenzo
Berger, Mitchel S.
Dunås, Tora
Nibali, Marco Conti
Furtner, Julia
Hervey-Jumper, Shawn
Idema, Albert J. S.
Kiesel, Barbara
Tewari, Rishi Nandoe
Mandonnet, Emmanuel
Müller, Domenique M. J.
Robe, Pierre A.
Rossi, Marco
Sagberg, Lisa M.
Sciortino, Tommaso
Aalders, Tom
Wagemakers, Michiel
Widhalm, Georg
Witte, Marnix G.
Zwinderman, Aeilko H.
Majewska, Paulina L.
Jakola, Asgeir S.
Solheim, Ole
Hamer, Philip C. De Witt
Reinertsen, Ingerid
Eijgelaar, Roelant S.
Bouget, David
author_sort Helland, Ragnhild Holden
collection PubMed
description Extent of resection after surgery is one of the main prognostic factors for patients diagnosed with glioblastoma. To achieve this, accurate segmentation and classification of residual tumor from post-operative MR images is essential. The current standard method for estimating it is subject to high inter- and intra-rater variability, and an automated method for segmentation of residual tumor in early post-operative MRI could lead to a more accurate estimation of extent of resection. In this study, two state-of-the-art neural network architectures for pre-operative segmentation were trained for the task. The models were extensively validated on a multicenter dataset with nearly 1000 patients, from 12 hospitals in Europe and the United States. The best performance achieved was a 61% Dice score, and the best classification performance was about 80% balanced accuracy, with a demonstrated ability to generalize across hospitals. In addition, the segmentation performance of the best models was on par with human expert raters. The predicted segmentations can be used to accurately classify the patients into those with residual tumor, and those with gross total resection.
format Online
Article
Text
id pubmed-10622432
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-106224322023-11-04 Segmentation of glioblastomas in early post-operative multi-modal MRI with deep neural networks Helland, Ragnhild Holden Ferles, Alexandros Pedersen, André Kommers, Ivar Ardon, Hilko Barkhof, Frederik Bello, Lorenzo Berger, Mitchel S. Dunås, Tora Nibali, Marco Conti Furtner, Julia Hervey-Jumper, Shawn Idema, Albert J. S. Kiesel, Barbara Tewari, Rishi Nandoe Mandonnet, Emmanuel Müller, Domenique M. J. Robe, Pierre A. Rossi, Marco Sagberg, Lisa M. Sciortino, Tommaso Aalders, Tom Wagemakers, Michiel Widhalm, Georg Witte, Marnix G. Zwinderman, Aeilko H. Majewska, Paulina L. Jakola, Asgeir S. Solheim, Ole Hamer, Philip C. De Witt Reinertsen, Ingerid Eijgelaar, Roelant S. Bouget, David Sci Rep Article Extent of resection after surgery is one of the main prognostic factors for patients diagnosed with glioblastoma. To achieve this, accurate segmentation and classification of residual tumor from post-operative MR images is essential. The current standard method for estimating it is subject to high inter- and intra-rater variability, and an automated method for segmentation of residual tumor in early post-operative MRI could lead to a more accurate estimation of extent of resection. In this study, two state-of-the-art neural network architectures for pre-operative segmentation were trained for the task. The models were extensively validated on a multicenter dataset with nearly 1000 patients, from 12 hospitals in Europe and the United States. The best performance achieved was a 61% Dice score, and the best classification performance was about 80% balanced accuracy, with a demonstrated ability to generalize across hospitals. In addition, the segmentation performance of the best models was on par with human expert raters. The predicted segmentations can be used to accurately classify the patients into those with residual tumor, and those with gross total resection. Nature Publishing Group UK 2023-11-02 /pmc/articles/PMC10622432/ /pubmed/37919325 http://dx.doi.org/10.1038/s41598-023-45456-x Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Helland, Ragnhild Holden
Ferles, Alexandros
Pedersen, André
Kommers, Ivar
Ardon, Hilko
Barkhof, Frederik
Bello, Lorenzo
Berger, Mitchel S.
Dunås, Tora
Nibali, Marco Conti
Furtner, Julia
Hervey-Jumper, Shawn
Idema, Albert J. S.
Kiesel, Barbara
Tewari, Rishi Nandoe
Mandonnet, Emmanuel
Müller, Domenique M. J.
Robe, Pierre A.
Rossi, Marco
Sagberg, Lisa M.
Sciortino, Tommaso
Aalders, Tom
Wagemakers, Michiel
Widhalm, Georg
Witte, Marnix G.
Zwinderman, Aeilko H.
Majewska, Paulina L.
Jakola, Asgeir S.
Solheim, Ole
Hamer, Philip C. De Witt
Reinertsen, Ingerid
Eijgelaar, Roelant S.
Bouget, David
Segmentation of glioblastomas in early post-operative multi-modal MRI with deep neural networks
title Segmentation of glioblastomas in early post-operative multi-modal MRI with deep neural networks
title_full Segmentation of glioblastomas in early post-operative multi-modal MRI with deep neural networks
title_fullStr Segmentation of glioblastomas in early post-operative multi-modal MRI with deep neural networks
title_full_unstemmed Segmentation of glioblastomas in early post-operative multi-modal MRI with deep neural networks
title_short Segmentation of glioblastomas in early post-operative multi-modal MRI with deep neural networks
title_sort segmentation of glioblastomas in early post-operative multi-modal mri with deep neural networks
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622432/
https://www.ncbi.nlm.nih.gov/pubmed/37919325
http://dx.doi.org/10.1038/s41598-023-45456-x
work_keys_str_mv AT hellandragnhildholden segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT ferlesalexandros segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT pedersenandre segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT kommersivar segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT ardonhilko segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT barkhoffrederik segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT bellolorenzo segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT bergermitchels segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT dunastora segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT nibalimarcoconti segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT furtnerjulia segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT herveyjumpershawn segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT idemaalbertjs segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT kieselbarbara segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT tewaririshinandoe segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT mandonnetemmanuel segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT mullerdomeniquemj segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT robepierrea segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT rossimarco segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT sagberglisam segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT sciortinotommaso segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT aalderstom segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT wagemakersmichiel segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT widhalmgeorg segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT wittemarnixg segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT zwindermanaeilkoh segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT majewskapaulinal segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT jakolaasgeirs segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT solheimole segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT hamerphilipcdewitt segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT reinertseningerid segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT eijgelaarroelants segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks
AT bougetdavid segmentationofglioblastomasinearlypostoperativemultimodalmriwithdeepneuralnetworks