Cargando…
An invertible, invariant crystal representation for inverse design of solid-state materials using generative deep learning
The past decade has witnessed rapid progress in deep learning for molecular design, owing to the availability of invertible and invariant representations for molecules such as simplified molecular-input line-entry system (SMILES), which has powered cheminformatics since the late 1980s. However, the...
Autores principales: | Xiao, Hang, Li, Rong, Shi, Xiaoyang, Chen, Yan, Zhu, Liangliang, Chen, Xi, Wang, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622439/ https://www.ncbi.nlm.nih.gov/pubmed/37919277 http://dx.doi.org/10.1038/s41467-023-42870-7 |
Ejemplares similares
-
Inverse design with deep generative models: next step in materials discovery
por: Lu, Shuaihua, et al.
Publicado: (2022) -
Generative Deep Neural Networks for Inverse Materials Design Using Backpropagation and Active Learning
por: Chen, Chun‐Teh, et al.
Publicado: (2020) -
Inverse design of optical lenses enabled by generative flow-based invertible neural networks
por: Luo, Menglong, et al.
Publicado: (2023) -
Automatic Seizure Classification Based on Domain-Invariant Deep Representation of EEG
por: Cao, Xincheng, et al.
Publicado: (2021) -
Symmetry, representations, and invariants
por: Goodman, Roe, et al.
Publicado: (2009)