Cargando…
Daily flow prediction of the Huayuankou hydrometeorological station based on the coupled CEEMDAN–SE–BiLSTM model
Enhancing flood forecasting accuracy, promoting rational water resource utilization and management, and mitigating river disasters all hinge on the crucial role of improving the accuracy of daily flow prediction. The coupled model of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise...
Autores principales: | Li, Haiyang, Zhang, Xianqi, Sun, Shifeng, Wen, Yihao, Yin, Qiuwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622528/ https://www.ncbi.nlm.nih.gov/pubmed/37919397 http://dx.doi.org/10.1038/s41598-023-46264-z |
Ejemplares similares
-
Assessing effect of best management practices in unmonitored watersheds using the coupled SWAT-BiLSTM approach
por: Zhang, Xianqi, et al.
Publicado: (2023) -
Monthly runoff prediction based on a coupled VMD-SSA-BiLSTM model
por: Zhang, Xianqi, et al.
Publicado: (2023) -
Prediction of sea ice area based on the CEEMDAN-SO-BiLSTM model
por: Guo, Qiao, et al.
Publicado: (2023) -
Enhancing daily streamflow simulation using the coupled SWAT-BiLSTM approach for climate change impact assessment in Hai-River Basin
por: Zhang, Xianqi, et al.
Publicado: (2023) -
Prediction of PM(2.5) concentration based on the CEEMDAN-RLMD-BiLSTM-LEC model
por: Guo, Qiao, et al.
Publicado: (2023)