Cargando…

Doubly elastic net regularized online portfolio optimization with transaction costs

Online portfolio optimization with transaction costs is a big challenge in large-scale intelligent computing community, since its undersample from rapidly-changing market and complexity from varying transaction costs. In this paper, we focus on this problem and solve it by machine learning system. S...

Descripción completa

Detalles Bibliográficos
Autores principales: Yao, Xiaoting, Zhang, Na
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622546/
https://www.ncbi.nlm.nih.gov/pubmed/37919458
http://dx.doi.org/10.1038/s41598-023-46059-2
Descripción
Sumario:Online portfolio optimization with transaction costs is a big challenge in large-scale intelligent computing community, since its undersample from rapidly-changing market and complexity from varying transaction costs. In this paper, we focus on this problem and solve it by machine learning system. Specifically, we reformulate the optimization problem with the minimization over simplex containing three items, which are negative expected return, the elastic net regularization of transaction costs controlled term and portfolio variable, respectively. We propose to apply linearized augmented Lagrangian method (LALM) and the alternating direction method of multipliers (ADMM) to solve the optimization model in a higher efficiency, meanwhile theoretically guarantee their convergence and deduce closed-form solutions of their subproblems in each iteration. Furthermore, we conduct extensive experiments on five benchmark datasets from real market to demonstrate that the proposed algorithms outperform compared state-of-the-art strategies in most cases in six dimensions.