Cargando…
Multi-class glioma segmentation on real-world data with missing MRI sequences: comparison of three deep learning algorithms
This study tests the generalisability of three Brain Tumor Segmentation (BraTS) challenge models using a multi-center dataset of varying image quality and incomplete MRI datasets. In this retrospective study, DeepMedic, no-new-Unet (nn-Unet), and NVIDIA-net (nv-Net) were trained and tested using man...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622563/ https://www.ncbi.nlm.nih.gov/pubmed/37919354 http://dx.doi.org/10.1038/s41598-023-44794-0 |
_version_ | 1785130567183892480 |
---|---|
author | Pemberton, Hugh G. Wu, Jiaming Kommers, Ivar Müller, Domenique M. J. Hu, Yipeng Goodkin, Olivia Vos, Sjoerd B. Bisdas, Sotirios Robe, Pierre A. Ardon, Hilko Bello, Lorenzo Rossi, Marco Sciortino, Tommaso Nibali, Marco Conti Berger, Mitchel S. Hervey-Jumper, Shawn L. Bouwknegt, Wim Van den Brink, Wimar A. Furtner, Julia Han, Seunggu J. Idema, Albert J. S. Kiesel, Barbara Widhalm, Georg Kloet, Alfred Wagemakers, Michiel Zwinderman, Aeilko H. Krieg, Sandro M. Mandonnet, Emmanuel Prados, Ferran de Witt Hamer, Philip Barkhof, Frederik Eijgelaar, Roelant S. |
author_facet | Pemberton, Hugh G. Wu, Jiaming Kommers, Ivar Müller, Domenique M. J. Hu, Yipeng Goodkin, Olivia Vos, Sjoerd B. Bisdas, Sotirios Robe, Pierre A. Ardon, Hilko Bello, Lorenzo Rossi, Marco Sciortino, Tommaso Nibali, Marco Conti Berger, Mitchel S. Hervey-Jumper, Shawn L. Bouwknegt, Wim Van den Brink, Wimar A. Furtner, Julia Han, Seunggu J. Idema, Albert J. S. Kiesel, Barbara Widhalm, Georg Kloet, Alfred Wagemakers, Michiel Zwinderman, Aeilko H. Krieg, Sandro M. Mandonnet, Emmanuel Prados, Ferran de Witt Hamer, Philip Barkhof, Frederik Eijgelaar, Roelant S. |
author_sort | Pemberton, Hugh G. |
collection | PubMed |
description | This study tests the generalisability of three Brain Tumor Segmentation (BraTS) challenge models using a multi-center dataset of varying image quality and incomplete MRI datasets. In this retrospective study, DeepMedic, no-new-Unet (nn-Unet), and NVIDIA-net (nv-Net) were trained and tested using manual segmentations from preoperative MRI of glioblastoma (GBM) and low-grade gliomas (LGG) from the BraTS 2021 dataset (1251 in total), in addition to 275 GBM and 205 LGG acquired clinically across 12 hospitals worldwide. Data was split into 80% training, 5% validation, and 15% internal test data. An additional external test-set of 158 GBM and 69 LGG was used to assess generalisability to other hospitals’ data. All models’ median Dice similarity coefficient (DSC) for both test sets were within, or higher than, previously reported human inter-rater agreement (range of 0.74–0.85). For both test sets, nn-Unet achieved the highest DSC (internal = 0.86, external = 0.93) and the lowest Hausdorff distances (10.07, 13.87 mm, respectively) for all tumor classes (p < 0.001). By applying Sparsified training, missing MRI sequences did not statistically affect the performance. nn-Unet achieves accurate segmentations in clinical settings even in the presence of incomplete MRI datasets. This facilitates future clinical adoption of automated glioma segmentation, which could help inform treatment planning and glioma monitoring. |
format | Online Article Text |
id | pubmed-10622563 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-106225632023-11-04 Multi-class glioma segmentation on real-world data with missing MRI sequences: comparison of three deep learning algorithms Pemberton, Hugh G. Wu, Jiaming Kommers, Ivar Müller, Domenique M. J. Hu, Yipeng Goodkin, Olivia Vos, Sjoerd B. Bisdas, Sotirios Robe, Pierre A. Ardon, Hilko Bello, Lorenzo Rossi, Marco Sciortino, Tommaso Nibali, Marco Conti Berger, Mitchel S. Hervey-Jumper, Shawn L. Bouwknegt, Wim Van den Brink, Wimar A. Furtner, Julia Han, Seunggu J. Idema, Albert J. S. Kiesel, Barbara Widhalm, Georg Kloet, Alfred Wagemakers, Michiel Zwinderman, Aeilko H. Krieg, Sandro M. Mandonnet, Emmanuel Prados, Ferran de Witt Hamer, Philip Barkhof, Frederik Eijgelaar, Roelant S. Sci Rep Article This study tests the generalisability of three Brain Tumor Segmentation (BraTS) challenge models using a multi-center dataset of varying image quality and incomplete MRI datasets. In this retrospective study, DeepMedic, no-new-Unet (nn-Unet), and NVIDIA-net (nv-Net) were trained and tested using manual segmentations from preoperative MRI of glioblastoma (GBM) and low-grade gliomas (LGG) from the BraTS 2021 dataset (1251 in total), in addition to 275 GBM and 205 LGG acquired clinically across 12 hospitals worldwide. Data was split into 80% training, 5% validation, and 15% internal test data. An additional external test-set of 158 GBM and 69 LGG was used to assess generalisability to other hospitals’ data. All models’ median Dice similarity coefficient (DSC) for both test sets were within, or higher than, previously reported human inter-rater agreement (range of 0.74–0.85). For both test sets, nn-Unet achieved the highest DSC (internal = 0.86, external = 0.93) and the lowest Hausdorff distances (10.07, 13.87 mm, respectively) for all tumor classes (p < 0.001). By applying Sparsified training, missing MRI sequences did not statistically affect the performance. nn-Unet achieves accurate segmentations in clinical settings even in the presence of incomplete MRI datasets. This facilitates future clinical adoption of automated glioma segmentation, which could help inform treatment planning and glioma monitoring. Nature Publishing Group UK 2023-11-02 /pmc/articles/PMC10622563/ /pubmed/37919354 http://dx.doi.org/10.1038/s41598-023-44794-0 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Pemberton, Hugh G. Wu, Jiaming Kommers, Ivar Müller, Domenique M. J. Hu, Yipeng Goodkin, Olivia Vos, Sjoerd B. Bisdas, Sotirios Robe, Pierre A. Ardon, Hilko Bello, Lorenzo Rossi, Marco Sciortino, Tommaso Nibali, Marco Conti Berger, Mitchel S. Hervey-Jumper, Shawn L. Bouwknegt, Wim Van den Brink, Wimar A. Furtner, Julia Han, Seunggu J. Idema, Albert J. S. Kiesel, Barbara Widhalm, Georg Kloet, Alfred Wagemakers, Michiel Zwinderman, Aeilko H. Krieg, Sandro M. Mandonnet, Emmanuel Prados, Ferran de Witt Hamer, Philip Barkhof, Frederik Eijgelaar, Roelant S. Multi-class glioma segmentation on real-world data with missing MRI sequences: comparison of three deep learning algorithms |
title | Multi-class glioma segmentation on real-world data with missing MRI sequences: comparison of three deep learning algorithms |
title_full | Multi-class glioma segmentation on real-world data with missing MRI sequences: comparison of three deep learning algorithms |
title_fullStr | Multi-class glioma segmentation on real-world data with missing MRI sequences: comparison of three deep learning algorithms |
title_full_unstemmed | Multi-class glioma segmentation on real-world data with missing MRI sequences: comparison of three deep learning algorithms |
title_short | Multi-class glioma segmentation on real-world data with missing MRI sequences: comparison of three deep learning algorithms |
title_sort | multi-class glioma segmentation on real-world data with missing mri sequences: comparison of three deep learning algorithms |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622563/ https://www.ncbi.nlm.nih.gov/pubmed/37919354 http://dx.doi.org/10.1038/s41598-023-44794-0 |
work_keys_str_mv | AT pembertonhughg multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT wujiaming multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT kommersivar multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT mullerdomeniquemj multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT huyipeng multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT goodkinolivia multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT vossjoerdb multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT bisdassotirios multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT robepierrea multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT ardonhilko multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT bellolorenzo multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT rossimarco multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT sciortinotommaso multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT nibalimarcoconti multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT bergermitchels multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT herveyjumpershawnl multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT bouwknegtwim multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT vandenbrinkwimara multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT furtnerjulia multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT hanseungguj multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT idemaalbertjs multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT kieselbarbara multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT widhalmgeorg multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT kloetalfred multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT wagemakersmichiel multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT zwindermanaeilkoh multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT kriegsandrom multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT mandonnetemmanuel multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT pradosferran multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT dewitthamerphilip multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT barkhoffrederik multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms AT eijgelaarroelants multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms |