Cargando…

Multi-class glioma segmentation on real-world data with missing MRI sequences: comparison of three deep learning algorithms

This study tests the generalisability of three Brain Tumor Segmentation (BraTS) challenge models using a multi-center dataset of varying image quality and incomplete MRI datasets. In this retrospective study, DeepMedic, no-new-Unet (nn-Unet), and NVIDIA-net (nv-Net) were trained and tested using man...

Descripción completa

Detalles Bibliográficos
Autores principales: Pemberton, Hugh G., Wu, Jiaming, Kommers, Ivar, Müller, Domenique M. J., Hu, Yipeng, Goodkin, Olivia, Vos, Sjoerd B., Bisdas, Sotirios, Robe, Pierre A., Ardon, Hilko, Bello, Lorenzo, Rossi, Marco, Sciortino, Tommaso, Nibali, Marco Conti, Berger, Mitchel S., Hervey-Jumper, Shawn L., Bouwknegt, Wim, Van den Brink, Wimar A., Furtner, Julia, Han, Seunggu J., Idema, Albert J. S., Kiesel, Barbara, Widhalm, Georg, Kloet, Alfred, Wagemakers, Michiel, Zwinderman, Aeilko H., Krieg, Sandro M., Mandonnet, Emmanuel, Prados, Ferran, de Witt Hamer, Philip, Barkhof, Frederik, Eijgelaar, Roelant S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622563/
https://www.ncbi.nlm.nih.gov/pubmed/37919354
http://dx.doi.org/10.1038/s41598-023-44794-0
_version_ 1785130567183892480
author Pemberton, Hugh G.
Wu, Jiaming
Kommers, Ivar
Müller, Domenique M. J.
Hu, Yipeng
Goodkin, Olivia
Vos, Sjoerd B.
Bisdas, Sotirios
Robe, Pierre A.
Ardon, Hilko
Bello, Lorenzo
Rossi, Marco
Sciortino, Tommaso
Nibali, Marco Conti
Berger, Mitchel S.
Hervey-Jumper, Shawn L.
Bouwknegt, Wim
Van den Brink, Wimar A.
Furtner, Julia
Han, Seunggu J.
Idema, Albert J. S.
Kiesel, Barbara
Widhalm, Georg
Kloet, Alfred
Wagemakers, Michiel
Zwinderman, Aeilko H.
Krieg, Sandro M.
Mandonnet, Emmanuel
Prados, Ferran
de Witt Hamer, Philip
Barkhof, Frederik
Eijgelaar, Roelant S.
author_facet Pemberton, Hugh G.
Wu, Jiaming
Kommers, Ivar
Müller, Domenique M. J.
Hu, Yipeng
Goodkin, Olivia
Vos, Sjoerd B.
Bisdas, Sotirios
Robe, Pierre A.
Ardon, Hilko
Bello, Lorenzo
Rossi, Marco
Sciortino, Tommaso
Nibali, Marco Conti
Berger, Mitchel S.
Hervey-Jumper, Shawn L.
Bouwknegt, Wim
Van den Brink, Wimar A.
Furtner, Julia
Han, Seunggu J.
Idema, Albert J. S.
Kiesel, Barbara
Widhalm, Georg
Kloet, Alfred
Wagemakers, Michiel
Zwinderman, Aeilko H.
Krieg, Sandro M.
Mandonnet, Emmanuel
Prados, Ferran
de Witt Hamer, Philip
Barkhof, Frederik
Eijgelaar, Roelant S.
author_sort Pemberton, Hugh G.
collection PubMed
description This study tests the generalisability of three Brain Tumor Segmentation (BraTS) challenge models using a multi-center dataset of varying image quality and incomplete MRI datasets. In this retrospective study, DeepMedic, no-new-Unet (nn-Unet), and NVIDIA-net (nv-Net) were trained and tested using manual segmentations from preoperative MRI of glioblastoma (GBM) and low-grade gliomas (LGG) from the BraTS 2021 dataset (1251 in total), in addition to 275 GBM and 205 LGG acquired clinically across 12 hospitals worldwide. Data was split into 80% training, 5% validation, and 15% internal test data. An additional external test-set of 158 GBM and 69 LGG was used to assess generalisability to other hospitals’ data. All models’ median Dice similarity coefficient (DSC) for both test sets were within, or higher than, previously reported human inter-rater agreement (range of 0.74–0.85). For both test sets, nn-Unet achieved the highest DSC (internal = 0.86, external = 0.93) and the lowest Hausdorff distances (10.07, 13.87 mm, respectively) for all tumor classes (p < 0.001). By applying Sparsified training, missing MRI sequences did not statistically affect the performance. nn-Unet achieves accurate segmentations in clinical settings even in the presence of incomplete MRI datasets. This facilitates future clinical adoption of automated glioma segmentation, which could help inform treatment planning and glioma monitoring.
format Online
Article
Text
id pubmed-10622563
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-106225632023-11-04 Multi-class glioma segmentation on real-world data with missing MRI sequences: comparison of three deep learning algorithms Pemberton, Hugh G. Wu, Jiaming Kommers, Ivar Müller, Domenique M. J. Hu, Yipeng Goodkin, Olivia Vos, Sjoerd B. Bisdas, Sotirios Robe, Pierre A. Ardon, Hilko Bello, Lorenzo Rossi, Marco Sciortino, Tommaso Nibali, Marco Conti Berger, Mitchel S. Hervey-Jumper, Shawn L. Bouwknegt, Wim Van den Brink, Wimar A. Furtner, Julia Han, Seunggu J. Idema, Albert J. S. Kiesel, Barbara Widhalm, Georg Kloet, Alfred Wagemakers, Michiel Zwinderman, Aeilko H. Krieg, Sandro M. Mandonnet, Emmanuel Prados, Ferran de Witt Hamer, Philip Barkhof, Frederik Eijgelaar, Roelant S. Sci Rep Article This study tests the generalisability of three Brain Tumor Segmentation (BraTS) challenge models using a multi-center dataset of varying image quality and incomplete MRI datasets. In this retrospective study, DeepMedic, no-new-Unet (nn-Unet), and NVIDIA-net (nv-Net) were trained and tested using manual segmentations from preoperative MRI of glioblastoma (GBM) and low-grade gliomas (LGG) from the BraTS 2021 dataset (1251 in total), in addition to 275 GBM and 205 LGG acquired clinically across 12 hospitals worldwide. Data was split into 80% training, 5% validation, and 15% internal test data. An additional external test-set of 158 GBM and 69 LGG was used to assess generalisability to other hospitals’ data. All models’ median Dice similarity coefficient (DSC) for both test sets were within, or higher than, previously reported human inter-rater agreement (range of 0.74–0.85). For both test sets, nn-Unet achieved the highest DSC (internal = 0.86, external = 0.93) and the lowest Hausdorff distances (10.07, 13.87 mm, respectively) for all tumor classes (p < 0.001). By applying Sparsified training, missing MRI sequences did not statistically affect the performance. nn-Unet achieves accurate segmentations in clinical settings even in the presence of incomplete MRI datasets. This facilitates future clinical adoption of automated glioma segmentation, which could help inform treatment planning and glioma monitoring. Nature Publishing Group UK 2023-11-02 /pmc/articles/PMC10622563/ /pubmed/37919354 http://dx.doi.org/10.1038/s41598-023-44794-0 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Pemberton, Hugh G.
Wu, Jiaming
Kommers, Ivar
Müller, Domenique M. J.
Hu, Yipeng
Goodkin, Olivia
Vos, Sjoerd B.
Bisdas, Sotirios
Robe, Pierre A.
Ardon, Hilko
Bello, Lorenzo
Rossi, Marco
Sciortino, Tommaso
Nibali, Marco Conti
Berger, Mitchel S.
Hervey-Jumper, Shawn L.
Bouwknegt, Wim
Van den Brink, Wimar A.
Furtner, Julia
Han, Seunggu J.
Idema, Albert J. S.
Kiesel, Barbara
Widhalm, Georg
Kloet, Alfred
Wagemakers, Michiel
Zwinderman, Aeilko H.
Krieg, Sandro M.
Mandonnet, Emmanuel
Prados, Ferran
de Witt Hamer, Philip
Barkhof, Frederik
Eijgelaar, Roelant S.
Multi-class glioma segmentation on real-world data with missing MRI sequences: comparison of three deep learning algorithms
title Multi-class glioma segmentation on real-world data with missing MRI sequences: comparison of three deep learning algorithms
title_full Multi-class glioma segmentation on real-world data with missing MRI sequences: comparison of three deep learning algorithms
title_fullStr Multi-class glioma segmentation on real-world data with missing MRI sequences: comparison of three deep learning algorithms
title_full_unstemmed Multi-class glioma segmentation on real-world data with missing MRI sequences: comparison of three deep learning algorithms
title_short Multi-class glioma segmentation on real-world data with missing MRI sequences: comparison of three deep learning algorithms
title_sort multi-class glioma segmentation on real-world data with missing mri sequences: comparison of three deep learning algorithms
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622563/
https://www.ncbi.nlm.nih.gov/pubmed/37919354
http://dx.doi.org/10.1038/s41598-023-44794-0
work_keys_str_mv AT pembertonhughg multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT wujiaming multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT kommersivar multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT mullerdomeniquemj multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT huyipeng multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT goodkinolivia multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT vossjoerdb multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT bisdassotirios multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT robepierrea multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT ardonhilko multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT bellolorenzo multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT rossimarco multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT sciortinotommaso multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT nibalimarcoconti multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT bergermitchels multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT herveyjumpershawnl multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT bouwknegtwim multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT vandenbrinkwimara multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT furtnerjulia multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT hanseungguj multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT idemaalbertjs multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT kieselbarbara multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT widhalmgeorg multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT kloetalfred multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT wagemakersmichiel multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT zwindermanaeilkoh multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT kriegsandrom multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT mandonnetemmanuel multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT pradosferran multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT dewitthamerphilip multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT barkhoffrederik multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms
AT eijgelaarroelants multiclassgliomasegmentationonrealworlddatawithmissingmrisequencescomparisonofthreedeeplearningalgorithms