Cargando…
Knowledge distillation of multi-scale dense prediction transformer for self-supervised depth estimation
Depth estimation is an inverse projection problem that estimates pixel-level distances from a single image. Although, supervised methods have shown promising results, it has intrinsic limitations in requiring ground truth depth from an external sensor. On the other hand, self-supervised depth estima...
Autores principales: | Song, Jimin, Lee, Sang Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622578/ https://www.ncbi.nlm.nih.gov/pubmed/37919392 http://dx.doi.org/10.1038/s41598-023-46178-w |
Ejemplares similares
-
Confidence-aware self-supervised learning for dense monocular depth estimation in dynamic laparoscopic scene
por: Hirohata, Yasuhide, et al.
Publicado: (2023) -
Knowledge distillation for multi-depth-model-fusion recommendation algorithm
por: Yang, Mingbao, et al.
Publicado: (2022) -
Knowledge Fusion Distillation: Improving Distillation with Multi-scale Attention Mechanisms
por: Li, Linfeng, et al.
Publicado: (2023) -
Self-supervised recurrent depth estimation with attention mechanisms
por: Makarov, Ilya, et al.
Publicado: (2022) -
Self-evolving vision transformer for chest X-ray diagnosis through knowledge distillation
por: Park, Sangjoon, et al.
Publicado: (2022)