Cargando…
Combinatorial efficacy of Manuka honey and antibiotics in the in vitro control of staphylococci and their small colony variants
INTRODUCTION: Staphylococci are among the list of problematic bacteria contributing to the global antibiotic resistance (ABR) crisis. Their ability to adopt the small colony variant (SCV) phenotype, induced by prolonged antibiotic chemotherapy, complicates staphylococcal infection control options. N...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622673/ https://www.ncbi.nlm.nih.gov/pubmed/37928190 http://dx.doi.org/10.3389/fcimb.2023.1219984 |
_version_ | 1785130592378028032 |
---|---|
author | Liang, Jiawei Adeleye, Mowalolaoluwa Onyango, Laura A. |
author_facet | Liang, Jiawei Adeleye, Mowalolaoluwa Onyango, Laura A. |
author_sort | Liang, Jiawei |
collection | PubMed |
description | INTRODUCTION: Staphylococci are among the list of problematic bacteria contributing to the global antibiotic resistance (ABR) crisis. Their ability to adopt the small colony variant (SCV) phenotype, induced by prolonged antibiotic chemotherapy, complicates staphylococcal infection control options. Novel and alternative approaches are needed to tackle staphylococcal infections and curb ABR. Manuka honey (MH), a non-antibiotic alternative is recognized for its unique antibacterial activity based on its methylglyoxal (MGO) component. METHODS: In this study, MH (MGO 830+) was tested in combination with gentamicin (GEN), rifampicin (RIF), or vancomycin (VA) against staphylococcal wildtype (WT) and SCVs. To our knowledge, there are no current studies in the literature documenting the effects of MH on staphylococcal SCVs. While Staphylococcus aureus is well-studied for its international ABR burden, limited data exists demonstrating the effects of MH on S. epidermidis and S. lugdunensis whose pathogenic relevance and contribution to ABR is also rising. RESULTS & DISCUSSION: The three staphylococci were most susceptible to RIF (0.06-0.24 μg/ml), then GEN (0.12-0.49 μg/ml), and lastly VA (0.49-0.96 μg/ml). The MICs of MH were 7%, 7-8%, and 6-7% (w/v), respectively. Fractional inhibitory concentration (FIC) evaluations showed that the combined MH + antibiotic effect was either additive (FICI 1-2), or partially synergistic (FICI >0.5-1). While all three antibiotics induced SCVs in vitro, stable SCVs were observed in GEN treatments only. The addition of MH to these GEN-SCV-induction analyses resulted in complete suppression of SCVs (p<0.001) in all three staphylococci, suggesting that MH’s antibacterial properties interfered with GEN’s SCV induction mechanisms. Moreover, the addition of MH to growth cultures of recovered stable SCVs resulted in the inhibition of SCV growth by at least 99%, indicating MH’s ability to prevent subsequent SCV growth. These in vitro analyses demonstrated MH’s broad-spectrum capabilities not only in improving WT staphylococci susceptibility to the three antibiotics, but also mitigated the development and subsequent growth of their SCV phenotypes. MH in combination with antibiotics has the potential to not only resensitize staphylococci to antibiotics and consequently require less antibiotic usage, but in instances where prolonged chemotherapy is employed, the development and growth of SCVs would be hampered, providing a better clinical outcome, all of which mitigate ABR. |
format | Online Article Text |
id | pubmed-10622673 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-106226732023-11-04 Combinatorial efficacy of Manuka honey and antibiotics in the in vitro control of staphylococci and their small colony variants Liang, Jiawei Adeleye, Mowalolaoluwa Onyango, Laura A. Front Cell Infect Microbiol Cellular and Infection Microbiology INTRODUCTION: Staphylococci are among the list of problematic bacteria contributing to the global antibiotic resistance (ABR) crisis. Their ability to adopt the small colony variant (SCV) phenotype, induced by prolonged antibiotic chemotherapy, complicates staphylococcal infection control options. Novel and alternative approaches are needed to tackle staphylococcal infections and curb ABR. Manuka honey (MH), a non-antibiotic alternative is recognized for its unique antibacterial activity based on its methylglyoxal (MGO) component. METHODS: In this study, MH (MGO 830+) was tested in combination with gentamicin (GEN), rifampicin (RIF), or vancomycin (VA) against staphylococcal wildtype (WT) and SCVs. To our knowledge, there are no current studies in the literature documenting the effects of MH on staphylococcal SCVs. While Staphylococcus aureus is well-studied for its international ABR burden, limited data exists demonstrating the effects of MH on S. epidermidis and S. lugdunensis whose pathogenic relevance and contribution to ABR is also rising. RESULTS & DISCUSSION: The three staphylococci were most susceptible to RIF (0.06-0.24 μg/ml), then GEN (0.12-0.49 μg/ml), and lastly VA (0.49-0.96 μg/ml). The MICs of MH were 7%, 7-8%, and 6-7% (w/v), respectively. Fractional inhibitory concentration (FIC) evaluations showed that the combined MH + antibiotic effect was either additive (FICI 1-2), or partially synergistic (FICI >0.5-1). While all three antibiotics induced SCVs in vitro, stable SCVs were observed in GEN treatments only. The addition of MH to these GEN-SCV-induction analyses resulted in complete suppression of SCVs (p<0.001) in all three staphylococci, suggesting that MH’s antibacterial properties interfered with GEN’s SCV induction mechanisms. Moreover, the addition of MH to growth cultures of recovered stable SCVs resulted in the inhibition of SCV growth by at least 99%, indicating MH’s ability to prevent subsequent SCV growth. These in vitro analyses demonstrated MH’s broad-spectrum capabilities not only in improving WT staphylococci susceptibility to the three antibiotics, but also mitigated the development and subsequent growth of their SCV phenotypes. MH in combination with antibiotics has the potential to not only resensitize staphylococci to antibiotics and consequently require less antibiotic usage, but in instances where prolonged chemotherapy is employed, the development and growth of SCVs would be hampered, providing a better clinical outcome, all of which mitigate ABR. Frontiers Media S.A. 2023-10-19 /pmc/articles/PMC10622673/ /pubmed/37928190 http://dx.doi.org/10.3389/fcimb.2023.1219984 Text en Copyright © 2023 Liang, Adeleye and Onyango https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cellular and Infection Microbiology Liang, Jiawei Adeleye, Mowalolaoluwa Onyango, Laura A. Combinatorial efficacy of Manuka honey and antibiotics in the in vitro control of staphylococci and their small colony variants |
title | Combinatorial efficacy of Manuka honey and antibiotics in the in vitro control of staphylococci and their small colony variants |
title_full | Combinatorial efficacy of Manuka honey and antibiotics in the in vitro control of staphylococci and their small colony variants |
title_fullStr | Combinatorial efficacy of Manuka honey and antibiotics in the in vitro control of staphylococci and their small colony variants |
title_full_unstemmed | Combinatorial efficacy of Manuka honey and antibiotics in the in vitro control of staphylococci and their small colony variants |
title_short | Combinatorial efficacy of Manuka honey and antibiotics in the in vitro control of staphylococci and their small colony variants |
title_sort | combinatorial efficacy of manuka honey and antibiotics in the in vitro control of staphylococci and their small colony variants |
topic | Cellular and Infection Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622673/ https://www.ncbi.nlm.nih.gov/pubmed/37928190 http://dx.doi.org/10.3389/fcimb.2023.1219984 |
work_keys_str_mv | AT liangjiawei combinatorialefficacyofmanukahoneyandantibioticsintheinvitrocontrolofstaphylococciandtheirsmallcolonyvariants AT adeleyemowalolaoluwa combinatorialefficacyofmanukahoneyandantibioticsintheinvitrocontrolofstaphylococciandtheirsmallcolonyvariants AT onyangolauraa combinatorialefficacyofmanukahoneyandantibioticsintheinvitrocontrolofstaphylococciandtheirsmallcolonyvariants |