Cargando…
A learnable EEG channel selection method for MI-BCI using efficient channel attention
INTRODUCTION: During electroencephalography (EEG)-based motor imagery-brain-computer interfaces (MI-BCIs) task, a large number of electrodes are commonly used, and consume much computational resources. Therefore, channel selection is crucial while ensuring classification accuracy. METHODS: This pape...
Autores principales: | Tong, Lina, Qian, Yihui, Peng, Liang, Wang, Chen, Hou, Zeng-Guang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622956/ https://www.ncbi.nlm.nih.gov/pubmed/37928726 http://dx.doi.org/10.3389/fnins.2023.1276067 |
Ejemplares similares
-
Design of virtual BCI channels based on informer
por: Sun, Hang, et al.
Publicado: (2023) -
An EEG-based asynchronous MI-BCI system to reduce false positives with a small number of channels for neurorehabilitation: A pilot study
por: Song, Minsu, et al.
Publicado: (2022) -
Toward a Hybrid Passive BCI for the Modulation of Sustained Attention Using EEG and fNIRS
por: Karran, Alexander J., et al.
Publicado: (2019) -
Assigning channel weights using an attention mechanism: an EEG interpolation algorithm
por: Liu, Renjie, et al.
Publicado: (2023) -
Effects of user mental state on EEG-BCI performance
por: Myrden, Andrew, et al.
Publicado: (2015)