Cargando…
PCG-net: feature adaptive deep learning for automated head and neck organs-at-risk segmentation
INTRODUCTION: Radiation therapy is a common treatment option for Head and Neck Cancer (HNC), where the accurate segmentation of Head and Neck (HN) Organs-AtRisks (OARs) is critical for effective treatment planning. Manual labeling of HN OARs is time-consuming and subjective. Therefore, deep learning...
Autores principales: | Luan, Shunyao, Wei, Changchao, Ding, Yi, Xue, Xudong, Wei, Wei, Yu, Xiao, Wang, Xiao, Ma, Chi, Zhu, Benpeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623055/ https://www.ncbi.nlm.nih.gov/pubmed/37927463 http://dx.doi.org/10.3389/fonc.2023.1177788 |
Ejemplares similares
-
Machine Learning-Based Quality Assurance for Automatic Segmentation
of Head-and-Neck Organs-at-Risk in Radiotherapy
por: Luan, Shunyao, et al.
Publicado: (2023) -
Adaptive Attention Convolutional Neural Network for Liver Tumor Segmentation
por: Luan, Shunyao, et al.
Publicado: (2021) -
PCG-Cut: Graph Driven Segmentation of the Prostate Central Gland
por: Egger, Jan
Publicado: (2013) -
PCG 8 pit.
por: Jean-Luc Caron
Publicado: (1999) -
PCG 8 pit.
por: Jean-Luc Caron
Publicado: (1999)