Cargando…
Estimating flow fields with reduced order models
The estimation of fluid flows inside a centrifugal pump in realtime is a challenging task that cannot be achieved with long-established methods like CFD due to their computational demands. We use a projection-based reduced order model (ROM) instead. Based on this ROM, a realtime observer can be devi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623178/ https://www.ncbi.nlm.nih.gov/pubmed/37928036 http://dx.doi.org/10.1016/j.heliyon.2023.e20930 |
Sumario: | The estimation of fluid flows inside a centrifugal pump in realtime is a challenging task that cannot be achieved with long-established methods like CFD due to their computational demands. We use a projection-based reduced order model (ROM) instead. Based on this ROM, a realtime observer can be devised that estimates the temporally and spatially resolved velocity and pressure fields inside the pump. The entire fluid-solid domain is treated as a fluid in order to be able to consider moving rigid bodies in the reduction method. A greedy algorithm is introduced for finding suitable and as few measurement locations as possible. Robust observability is ensured with an extended Kalman filter, which is based on a time-variant observability matrix obtained from the nonlinear velocity ROM. We present the results of the velocity and pressure ROMs based on a unsteady Reynolds-averaged Navier-Stokes CFD simulation of a 2D centrifugal pump, as well as the results for the extended Kalman filter. |
---|