Cargando…

A segmentation model to detect cevical lesions based on machine learning of colposcopic images

BACKGROUND: Semantic segmentation is crucial in medical image diagnosis. Traditional deep convolutional neural networks excel in image classification and object detection but fall short in segmentation tasks. Enhancing the accuracy and efficiency of detecting high-level cervical lesions and invasive...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Zhen, Zeng, Chu-Mei, Dong, Yan-Gang, Cao, Ying, Yu, Li-Yao, Liu, Hui-Ying, Tian, Xun, Tian, Rui, Zhong, Chao-Yue, Zhao, Ting-Ting, Liu, Jia-Shuo, Chen, Ye, Li, Li-Fang, Huang, Zhe-Ying, Wang, Yu-Yan, Hu, Zheng, Zhang, Jingjing, Liang, Jiu-Xing, Zhou, Ping, Lu, Yi-Qin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623278/
https://www.ncbi.nlm.nih.gov/pubmed/37928028
http://dx.doi.org/10.1016/j.heliyon.2023.e21043
_version_ 1785130709033156608
author Li, Zhen
Zeng, Chu-Mei
Dong, Yan-Gang
Cao, Ying
Yu, Li-Yao
Liu, Hui-Ying
Tian, Xun
Tian, Rui
Zhong, Chao-Yue
Zhao, Ting-Ting
Liu, Jia-Shuo
Chen, Ye
Li, Li-Fang
Huang, Zhe-Ying
Wang, Yu-Yan
Hu, Zheng
Zhang, Jingjing
Liang, Jiu-Xing
Zhou, Ping
Lu, Yi-Qin
author_facet Li, Zhen
Zeng, Chu-Mei
Dong, Yan-Gang
Cao, Ying
Yu, Li-Yao
Liu, Hui-Ying
Tian, Xun
Tian, Rui
Zhong, Chao-Yue
Zhao, Ting-Ting
Liu, Jia-Shuo
Chen, Ye
Li, Li-Fang
Huang, Zhe-Ying
Wang, Yu-Yan
Hu, Zheng
Zhang, Jingjing
Liang, Jiu-Xing
Zhou, Ping
Lu, Yi-Qin
author_sort Li, Zhen
collection PubMed
description BACKGROUND: Semantic segmentation is crucial in medical image diagnosis. Traditional deep convolutional neural networks excel in image classification and object detection but fall short in segmentation tasks. Enhancing the accuracy and efficiency of detecting high-level cervical lesions and invasive cancer poses a primary challenge in segmentation model development. METHODS: Between 2018 and 2022, we retrospectively studied a total of 777 patients, comprising 339 patients with high-level cervical lesions and 313 patients with microinvasive or invasive cervical cancer. Overall, 1554 colposcopic images were put into the DeepLabv3+ model for learning. Accuracy, Precision, Specificity, and mIoU were employed to evaluate the performance of the model in the prediction of cervical high-level lesions and cancer. RESULTS: Experiments showed that our segmentation model had better diagnosis efficiency than colposcopic experts and other artificial intelligence models, and reached Accuracy of 93.29 %, Precision of 87.2 %, Specificity of 90.1 %, and mIoU of 80.27 %, respectively. CONCLUTION: The DeepLabv3+ model had good performance in the segmentation of cervical lesions in colposcopic post-acetic-acid images and can better assist colposcopists in improving the diagnosis.
format Online
Article
Text
id pubmed-10623278
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-106232782023-11-04 A segmentation model to detect cevical lesions based on machine learning of colposcopic images Li, Zhen Zeng, Chu-Mei Dong, Yan-Gang Cao, Ying Yu, Li-Yao Liu, Hui-Ying Tian, Xun Tian, Rui Zhong, Chao-Yue Zhao, Ting-Ting Liu, Jia-Shuo Chen, Ye Li, Li-Fang Huang, Zhe-Ying Wang, Yu-Yan Hu, Zheng Zhang, Jingjing Liang, Jiu-Xing Zhou, Ping Lu, Yi-Qin Heliyon Research Article BACKGROUND: Semantic segmentation is crucial in medical image diagnosis. Traditional deep convolutional neural networks excel in image classification and object detection but fall short in segmentation tasks. Enhancing the accuracy and efficiency of detecting high-level cervical lesions and invasive cancer poses a primary challenge in segmentation model development. METHODS: Between 2018 and 2022, we retrospectively studied a total of 777 patients, comprising 339 patients with high-level cervical lesions and 313 patients with microinvasive or invasive cervical cancer. Overall, 1554 colposcopic images were put into the DeepLabv3+ model for learning. Accuracy, Precision, Specificity, and mIoU were employed to evaluate the performance of the model in the prediction of cervical high-level lesions and cancer. RESULTS: Experiments showed that our segmentation model had better diagnosis efficiency than colposcopic experts and other artificial intelligence models, and reached Accuracy of 93.29 %, Precision of 87.2 %, Specificity of 90.1 %, and mIoU of 80.27 %, respectively. CONCLUTION: The DeepLabv3+ model had good performance in the segmentation of cervical lesions in colposcopic post-acetic-acid images and can better assist colposcopists in improving the diagnosis. Elsevier 2023-10-20 /pmc/articles/PMC10623278/ /pubmed/37928028 http://dx.doi.org/10.1016/j.heliyon.2023.e21043 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Li, Zhen
Zeng, Chu-Mei
Dong, Yan-Gang
Cao, Ying
Yu, Li-Yao
Liu, Hui-Ying
Tian, Xun
Tian, Rui
Zhong, Chao-Yue
Zhao, Ting-Ting
Liu, Jia-Shuo
Chen, Ye
Li, Li-Fang
Huang, Zhe-Ying
Wang, Yu-Yan
Hu, Zheng
Zhang, Jingjing
Liang, Jiu-Xing
Zhou, Ping
Lu, Yi-Qin
A segmentation model to detect cevical lesions based on machine learning of colposcopic images
title A segmentation model to detect cevical lesions based on machine learning of colposcopic images
title_full A segmentation model to detect cevical lesions based on machine learning of colposcopic images
title_fullStr A segmentation model to detect cevical lesions based on machine learning of colposcopic images
title_full_unstemmed A segmentation model to detect cevical lesions based on machine learning of colposcopic images
title_short A segmentation model to detect cevical lesions based on machine learning of colposcopic images
title_sort segmentation model to detect cevical lesions based on machine learning of colposcopic images
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623278/
https://www.ncbi.nlm.nih.gov/pubmed/37928028
http://dx.doi.org/10.1016/j.heliyon.2023.e21043
work_keys_str_mv AT lizhen asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT zengchumei asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT dongyangang asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT caoying asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT yuliyao asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT liuhuiying asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT tianxun asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT tianrui asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT zhongchaoyue asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT zhaotingting asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT liujiashuo asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT chenye asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT lilifang asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT huangzheying asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT wangyuyan asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT huzheng asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT zhangjingjing asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT liangjiuxing asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT zhouping asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT luyiqin asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT lizhen segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT zengchumei segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT dongyangang segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT caoying segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT yuliyao segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT liuhuiying segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT tianxun segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT tianrui segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT zhongchaoyue segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT zhaotingting segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT liujiashuo segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT chenye segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT lilifang segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT huangzheying segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT wangyuyan segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT huzheng segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT zhangjingjing segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT liangjiuxing segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT zhouping segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages
AT luyiqin segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages