Cargando…
A segmentation model to detect cevical lesions based on machine learning of colposcopic images
BACKGROUND: Semantic segmentation is crucial in medical image diagnosis. Traditional deep convolutional neural networks excel in image classification and object detection but fall short in segmentation tasks. Enhancing the accuracy and efficiency of detecting high-level cervical lesions and invasive...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623278/ https://www.ncbi.nlm.nih.gov/pubmed/37928028 http://dx.doi.org/10.1016/j.heliyon.2023.e21043 |
_version_ | 1785130709033156608 |
---|---|
author | Li, Zhen Zeng, Chu-Mei Dong, Yan-Gang Cao, Ying Yu, Li-Yao Liu, Hui-Ying Tian, Xun Tian, Rui Zhong, Chao-Yue Zhao, Ting-Ting Liu, Jia-Shuo Chen, Ye Li, Li-Fang Huang, Zhe-Ying Wang, Yu-Yan Hu, Zheng Zhang, Jingjing Liang, Jiu-Xing Zhou, Ping Lu, Yi-Qin |
author_facet | Li, Zhen Zeng, Chu-Mei Dong, Yan-Gang Cao, Ying Yu, Li-Yao Liu, Hui-Ying Tian, Xun Tian, Rui Zhong, Chao-Yue Zhao, Ting-Ting Liu, Jia-Shuo Chen, Ye Li, Li-Fang Huang, Zhe-Ying Wang, Yu-Yan Hu, Zheng Zhang, Jingjing Liang, Jiu-Xing Zhou, Ping Lu, Yi-Qin |
author_sort | Li, Zhen |
collection | PubMed |
description | BACKGROUND: Semantic segmentation is crucial in medical image diagnosis. Traditional deep convolutional neural networks excel in image classification and object detection but fall short in segmentation tasks. Enhancing the accuracy and efficiency of detecting high-level cervical lesions and invasive cancer poses a primary challenge in segmentation model development. METHODS: Between 2018 and 2022, we retrospectively studied a total of 777 patients, comprising 339 patients with high-level cervical lesions and 313 patients with microinvasive or invasive cervical cancer. Overall, 1554 colposcopic images were put into the DeepLabv3+ model for learning. Accuracy, Precision, Specificity, and mIoU were employed to evaluate the performance of the model in the prediction of cervical high-level lesions and cancer. RESULTS: Experiments showed that our segmentation model had better diagnosis efficiency than colposcopic experts and other artificial intelligence models, and reached Accuracy of 93.29 %, Precision of 87.2 %, Specificity of 90.1 %, and mIoU of 80.27 %, respectively. CONCLUTION: The DeepLabv3+ model had good performance in the segmentation of cervical lesions in colposcopic post-acetic-acid images and can better assist colposcopists in improving the diagnosis. |
format | Online Article Text |
id | pubmed-10623278 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-106232782023-11-04 A segmentation model to detect cevical lesions based on machine learning of colposcopic images Li, Zhen Zeng, Chu-Mei Dong, Yan-Gang Cao, Ying Yu, Li-Yao Liu, Hui-Ying Tian, Xun Tian, Rui Zhong, Chao-Yue Zhao, Ting-Ting Liu, Jia-Shuo Chen, Ye Li, Li-Fang Huang, Zhe-Ying Wang, Yu-Yan Hu, Zheng Zhang, Jingjing Liang, Jiu-Xing Zhou, Ping Lu, Yi-Qin Heliyon Research Article BACKGROUND: Semantic segmentation is crucial in medical image diagnosis. Traditional deep convolutional neural networks excel in image classification and object detection but fall short in segmentation tasks. Enhancing the accuracy and efficiency of detecting high-level cervical lesions and invasive cancer poses a primary challenge in segmentation model development. METHODS: Between 2018 and 2022, we retrospectively studied a total of 777 patients, comprising 339 patients with high-level cervical lesions and 313 patients with microinvasive or invasive cervical cancer. Overall, 1554 colposcopic images were put into the DeepLabv3+ model for learning. Accuracy, Precision, Specificity, and mIoU were employed to evaluate the performance of the model in the prediction of cervical high-level lesions and cancer. RESULTS: Experiments showed that our segmentation model had better diagnosis efficiency than colposcopic experts and other artificial intelligence models, and reached Accuracy of 93.29 %, Precision of 87.2 %, Specificity of 90.1 %, and mIoU of 80.27 %, respectively. CONCLUTION: The DeepLabv3+ model had good performance in the segmentation of cervical lesions in colposcopic post-acetic-acid images and can better assist colposcopists in improving the diagnosis. Elsevier 2023-10-20 /pmc/articles/PMC10623278/ /pubmed/37928028 http://dx.doi.org/10.1016/j.heliyon.2023.e21043 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Li, Zhen Zeng, Chu-Mei Dong, Yan-Gang Cao, Ying Yu, Li-Yao Liu, Hui-Ying Tian, Xun Tian, Rui Zhong, Chao-Yue Zhao, Ting-Ting Liu, Jia-Shuo Chen, Ye Li, Li-Fang Huang, Zhe-Ying Wang, Yu-Yan Hu, Zheng Zhang, Jingjing Liang, Jiu-Xing Zhou, Ping Lu, Yi-Qin A segmentation model to detect cevical lesions based on machine learning of colposcopic images |
title | A segmentation model to detect cevical lesions based on machine learning of colposcopic images |
title_full | A segmentation model to detect cevical lesions based on machine learning of colposcopic images |
title_fullStr | A segmentation model to detect cevical lesions based on machine learning of colposcopic images |
title_full_unstemmed | A segmentation model to detect cevical lesions based on machine learning of colposcopic images |
title_short | A segmentation model to detect cevical lesions based on machine learning of colposcopic images |
title_sort | segmentation model to detect cevical lesions based on machine learning of colposcopic images |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623278/ https://www.ncbi.nlm.nih.gov/pubmed/37928028 http://dx.doi.org/10.1016/j.heliyon.2023.e21043 |
work_keys_str_mv | AT lizhen asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT zengchumei asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT dongyangang asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT caoying asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT yuliyao asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT liuhuiying asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT tianxun asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT tianrui asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT zhongchaoyue asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT zhaotingting asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT liujiashuo asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT chenye asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT lilifang asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT huangzheying asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT wangyuyan asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT huzheng asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT zhangjingjing asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT liangjiuxing asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT zhouping asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT luyiqin asegmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT lizhen segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT zengchumei segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT dongyangang segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT caoying segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT yuliyao segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT liuhuiying segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT tianxun segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT tianrui segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT zhongchaoyue segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT zhaotingting segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT liujiashuo segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT chenye segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT lilifang segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT huangzheying segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT wangyuyan segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT huzheng segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT zhangjingjing segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT liangjiuxing segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT zhouping segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages AT luyiqin segmentationmodeltodetectcevicallesionsbasedonmachinelearningofcolposcopicimages |