Cargando…
Combined 3D bioprinting and tissue-specific ECM system reveals the influence of brain matrix on stem cell differentiation
We have previously shown that human and murine breast extracellular matrix (ECM) can significantly impact cellular behavior, including stem cell fate determination. It has been established that tissue-specific extracellular matrix from the central nervous system has the capacity to support neuronal...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623327/ https://www.ncbi.nlm.nih.gov/pubmed/37928905 http://dx.doi.org/10.3389/fcell.2023.1258993 |
_version_ | 1785130718715707392 |
---|---|
author | Zamponi, Martina Mollica, Peter A. Khodour, Yara Bjerring, Julie S. Bruno, Robert D. Sachs, Patrick C. |
author_facet | Zamponi, Martina Mollica, Peter A. Khodour, Yara Bjerring, Julie S. Bruno, Robert D. Sachs, Patrick C. |
author_sort | Zamponi, Martina |
collection | PubMed |
description | We have previously shown that human and murine breast extracellular matrix (ECM) can significantly impact cellular behavior, including stem cell fate determination. It has been established that tissue-specific extracellular matrix from the central nervous system has the capacity to support neuronal survival. However, the characterization of its influence on stem cell differentiation and its adaptation to robust 3D culture models is underdeveloped. To address these issues, we combined our 3D bioprinter with hydrogels containing porcine brain extracellular matrix (BMX) to test the influence of the extracellular matrix on stem cell differentiation. Our 3D bioprinting system generated reproducible 3D neural structures derived from mouse embryonic stem cells (mESCs). We demonstrate that the addition of BMX preferentially influences 3D bioprinted mESCs towards neural lineages compared to standard basement membrane (Geltrex/Matrigel) hydrogels alone. Furthermore, we demonstrate that we can transplant these 3D bioprinted neural cellular structures into a mouse’s cleared mammary fat pad, where they continue to grow into larger neural outgrowths. Finally, we demonstrate that direct injection of human induced pluripotent stem cells (hiPSCS) and neural stem cells (NSCs) suspended in pure BMX formed neural structures in vivo. Combined, these findings describe a unique system for studying brain ECM/stem cell interactions and demonstrate that BMX can direct pluripotent stem cells to differentiate down a neural cellular lineage without any additional specific differentiation stimuli. |
format | Online Article Text |
id | pubmed-10623327 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-106233272023-11-04 Combined 3D bioprinting and tissue-specific ECM system reveals the influence of brain matrix on stem cell differentiation Zamponi, Martina Mollica, Peter A. Khodour, Yara Bjerring, Julie S. Bruno, Robert D. Sachs, Patrick C. Front Cell Dev Biol Cell and Developmental Biology We have previously shown that human and murine breast extracellular matrix (ECM) can significantly impact cellular behavior, including stem cell fate determination. It has been established that tissue-specific extracellular matrix from the central nervous system has the capacity to support neuronal survival. However, the characterization of its influence on stem cell differentiation and its adaptation to robust 3D culture models is underdeveloped. To address these issues, we combined our 3D bioprinter with hydrogels containing porcine brain extracellular matrix (BMX) to test the influence of the extracellular matrix on stem cell differentiation. Our 3D bioprinting system generated reproducible 3D neural structures derived from mouse embryonic stem cells (mESCs). We demonstrate that the addition of BMX preferentially influences 3D bioprinted mESCs towards neural lineages compared to standard basement membrane (Geltrex/Matrigel) hydrogels alone. Furthermore, we demonstrate that we can transplant these 3D bioprinted neural cellular structures into a mouse’s cleared mammary fat pad, where they continue to grow into larger neural outgrowths. Finally, we demonstrate that direct injection of human induced pluripotent stem cells (hiPSCS) and neural stem cells (NSCs) suspended in pure BMX formed neural structures in vivo. Combined, these findings describe a unique system for studying brain ECM/stem cell interactions and demonstrate that BMX can direct pluripotent stem cells to differentiate down a neural cellular lineage without any additional specific differentiation stimuli. Frontiers Media S.A. 2023-10-20 /pmc/articles/PMC10623327/ /pubmed/37928905 http://dx.doi.org/10.3389/fcell.2023.1258993 Text en Copyright © 2023 Zamponi, Mollica, Khodour, Bjerring, Bruno and Sachs. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cell and Developmental Biology Zamponi, Martina Mollica, Peter A. Khodour, Yara Bjerring, Julie S. Bruno, Robert D. Sachs, Patrick C. Combined 3D bioprinting and tissue-specific ECM system reveals the influence of brain matrix on stem cell differentiation |
title | Combined 3D bioprinting and tissue-specific ECM system reveals the influence of brain matrix on stem cell differentiation |
title_full | Combined 3D bioprinting and tissue-specific ECM system reveals the influence of brain matrix on stem cell differentiation |
title_fullStr | Combined 3D bioprinting and tissue-specific ECM system reveals the influence of brain matrix on stem cell differentiation |
title_full_unstemmed | Combined 3D bioprinting and tissue-specific ECM system reveals the influence of brain matrix on stem cell differentiation |
title_short | Combined 3D bioprinting and tissue-specific ECM system reveals the influence of brain matrix on stem cell differentiation |
title_sort | combined 3d bioprinting and tissue-specific ecm system reveals the influence of brain matrix on stem cell differentiation |
topic | Cell and Developmental Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623327/ https://www.ncbi.nlm.nih.gov/pubmed/37928905 http://dx.doi.org/10.3389/fcell.2023.1258993 |
work_keys_str_mv | AT zamponimartina combined3dbioprintingandtissuespecificecmsystemrevealstheinfluenceofbrainmatrixonstemcelldifferentiation AT mollicapetera combined3dbioprintingandtissuespecificecmsystemrevealstheinfluenceofbrainmatrixonstemcelldifferentiation AT khodouryara combined3dbioprintingandtissuespecificecmsystemrevealstheinfluenceofbrainmatrixonstemcelldifferentiation AT bjerringjulies combined3dbioprintingandtissuespecificecmsystemrevealstheinfluenceofbrainmatrixonstemcelldifferentiation AT brunorobertd combined3dbioprintingandtissuespecificecmsystemrevealstheinfluenceofbrainmatrixonstemcelldifferentiation AT sachspatrickc combined3dbioprintingandtissuespecificecmsystemrevealstheinfluenceofbrainmatrixonstemcelldifferentiation |