Cargando…
A deep-learning approach for segmentation of liver tumors in magnetic resonance imaging using UNet++
OBJECTIVE: Radiomic and deep learning studies based on magnetic resonance imaging (MRI) of liver tumor are gradually increasing. Manual segmentation of normal hepatic tissue and tumor exhibits limitations. METHODS: 105 patients diagnosed with hepatocellular carcinoma were retrospectively studied bet...
Autores principales: | Wang, Jing, Peng, Yanyang, Jing, Shi, Han, Lujun, Li, Tian, Luo, Junpeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623778/ https://www.ncbi.nlm.nih.gov/pubmed/37923988 http://dx.doi.org/10.1186/s12885-023-11432-x |
Ejemplares similares
-
A Deep Learning Approach for Liver and Tumor Segmentation in CT Images Using ResUNet
por: Rahman, Hameedur, et al.
Publicado: (2022) -
ESA-UNet for assisted diagnosis of cardiac magnetic resonance image based on the semantic segmentation of the heart
por: Li, Yuanzhe, et al.
Publicado: (2022) -
RGSB-UNet: Hybrid Deep Learning Framework for Tumour Segmentation in Digital Pathology Images
por: Zhao, Tengfei, et al.
Publicado: (2023) -
Connected-UNets: a deep learning architecture for breast mass segmentation
por: Baccouche, Asma, et al.
Publicado: (2021) -
MWG-UNet: Hybrid Deep Learning Framework for Lung Fields and Heart Segmentation in Chest X-ray Images
por: Lyu, Yu, et al.
Publicado: (2023)