Cargando…

MicroRNA-989 controls Aedes albopictus pupal-adult transition process by influencing cuticle chitin metabolism in pupae

BACKGROUND: Aedes albopictus is a vector of numerous devastating arboviruses and places heavy burdens on global public health. Chitin is one of the important components of cuticles and targeting chitin metabolism is a promising strategy for preventing mosquito dispersal and mosquito-borne diseases....

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Ruiling, Liu, Wenjuan, Fu, Jingwen, Zhang, Zhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623821/
https://www.ncbi.nlm.nih.gov/pubmed/37919799
http://dx.doi.org/10.1186/s13071-023-05976-x
Descripción
Sumario:BACKGROUND: Aedes albopictus is a vector of numerous devastating arboviruses and places heavy burdens on global public health. Chitin is one of the important components of cuticles and targeting chitin metabolism is a promising strategy for preventing mosquito dispersal and mosquito-borne diseases. Increasing evidence suggests that microRNAs (miRNAs) play crucial roles in various physiological processes of insects. METHODS: A previous analysis suggested that the microRNA miR-989 is potentially involved in chitin metabolism in Ae. albopictus pupae. In the present study, we found that the expression level of miR-989 was significantly overexpressed after injection of agomir. A dual-luciferase assay was used to determine the direct target of miR-989. Survival rate, eclosion rate and malformation rate were statistically analyzed to evaluate the potential effect of miR-989. Hematoxylin–eosin staining and chitin staining were used to evaluate the microstructural changes in the cuticles of Ae. albopictus pupae. RESULTS: Overexpression of miR-989 resulted in a significantly reduced survival rate and eclosion rate of pupae and an elevated malformation rate of adults. The results suggested that miR-989 acted as a regulator of chitin metabolism in Ae. albopictus pupae by affecting the transcript levels of the Ae. albopictus genes encoding chitin synthase 1 (AaCHS1) and chitinase 10 (AaCht10). The altered expression levels of the two chitin metabolism-related enzymes (CHS1 and Cht10, respectively) caused the structural changes in cuticles and further affected the pupal-adult transition process of Ae. albopictus. XM_029863591.1 was proven to be the target gene of miR-989 and displayed similar effects on pupae as miR-989. CONCLUSIONS: The microRNA miR-989 was found to be essential for chitin metabolism in old and new cuticles of Ae. albopictus pupae. The results of the current study suggested that miR-989 could be used as a potential target to control Ae. albopictus. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13071-023-05976-x.